
CS168, Fall 2024

Beyond Client-Server (part 2)
Collective Communication

Sylvia Ratnasamy

Recall
• Last time: apps based on group vs. client-server interactions
• Multicast as a communication primitive
• Implemented in the network (L3) or as an overlay (L7)
• Our context: the Internet at large

• Today: distributed training as our app
• Also based on groups of hosts that communicate
• But very different context: a single datacenter, different goals, etc.
• Leading to new communication primitives: collectives

Outline
• Quick review: Overlays

• Context on distributed training: app and infrastructure

• Communication collectives: definitions and the function they provide

• How collectives are implemented
• Focus on one collective: AllReduce
• Implementation at overlay and underlay level

R3

A

R4

R5

R6

R7

R8

R9

R10R1

R2

B

C

D
E

F

G

A virtual network (the “overlay”) on top of an underlying physical network (the “underlay”)

Reviewing overlays

R11 R12
R14Physical router

Virtual router

R1’s neighbors

D’s neighbors

Connected by
physical links

Virtual link

Physical path corresponding
to a single virtual link

nbr IP addr

A A’ IP addr

E E’s IP addr

R3

A

R4

R5

R6

R7

R8

R9

R10R1

R2

B

C

D
E

F

G

A virtual network (the “overlay”) on top of an underlying physical network (the “underlay”)

Reviewing overlays

R11 R12
R14

R3

A

R4

R5

R6

R7

R8

R9

R10R1

R2

B

C

D
E

F

G

Reviewing overlays

R11 R12
R14

Run a routing protocol
between virtual routers

Run routing protocols as usual (BGP, IS-IS, etc)

R3

A

R4

R5

R6

R7

R8

R9

R10R1

R2

B

C

D
E

F

G

Reviewing overlays

R11 R12
R14

Overlay routing table

Underlay routing tables
dst Next-hop

prefix1 R2

prefiix2 R3

prefix3 R2

... …

dst Next-
hop

G D

C B

F D

... …

Overlay path

As seen by the underlay

R3

A

R4

R5

R6

R7

R8

R9

R10R1

R2

B

C

D
E

F

G

Reviewing overlays

R11 R12
R14

Packets are tunneled

src=A,
dst=F… src=D,

dst=E

Outline

• Quick review: Overlays

• Context on distributed training: app and infrastructure

• Communication collectives: definitions and the function they provide

• How collectives are implemented
• Focus on one collective: AllReduce
• Implementation at overlay and underlay level

Training Job

Training: 10,000 ft. view (for CS168)

Dataset
Model Error Update

Trained model

Training task

Distributed Training: 10,000 ft. view (for CS168)

Dataset

Training task Dataset

Training task Dataset

Training task Dataset

Training task

Training task

Training task

Training task

Training task

Training task

Training task

Training task

Training task

Training task

Training task

Training task

Many options for how we parallelize the training process across compute nodes (data, model, pipeline, hybrid, etc.)Nodes exchange state before proceeding

Collective Communication

• A group of nodes that exchange data in a coordinated manner as part of a group computation

• Nature of this exchange depends on the details of the training and its parallelization

• Distilled into a foundational set of communication patterns referred to as “collectives”

• This lecture: what are these collectives and how are they implemented in the network
• We won’t get into why training/parallelization leads to these particular patterns

Distributed Training Infrastructure

• Nodes are specialized Graphics Processing Units (GPUs) or Tensor Processing Units (TPUs)
• Typical scale: few 100s up to tens of 1000s

• Typically interconnected by a dedicated datacenter-like network
• Dedicated à not shared with other jobs/apps
• Datacenter-like à
• Physically close
• Regular topology (Clos, Torus)
• Homogeneous
• High bandwidth

Distributed Training Infrastructure

Source: Nvidia

Distributed Training Infrastructure: GPUs

Source: Nvidia

Distributed Training Infrastructure: TPUs

Outline

• Quick review: Overlays

• Context on distributed training: app and infrastructure

• Communication collectives: definitions and the function they provide

• How collectives are implemented
• Focus on one collective: AllReduce
• Implementation at overlay and underlay level

Collective Communication

• Coordinated exchange of data between a group of nodes (as part of a group computation)

• Originally designed for supercomputers running high-performance computing (HPC) apps

• Now widely used for AI workloads
• Nvidia Collectives Communication Library (NCCL)
• MS Azure MSCCL
• TCCL, TE-CCL, …

A quick example for intuition
(Will return for a deeper look shortly)

0 1 2 3

0 1 32

Gather

Node 0 Node 1 Node 2 Node 3
Before

After

Collectives: common characteristics

• Synchronized: nodes (GPUs/TPUs) invoke and execute the collective operation in parallel

Collectives: common characteristics

• Synchronized: nodes (GPUs/TPUs) invoke and execute the collective operation in parallel

• Orchestrated: centralized job scheduler distributes membership info, member IDs, roles, etc.

• Homogeneous: all nodes have same resources (compute, BW) and running same code

• Blocking (implicit or explicit): collective must complete at all nodes before proceeding

• Data may be transformed at intermediate hops in the communication path

Collectives: taxonomy and key operations

• Data redistribution (about moving data)
• Broadcast
• Scatter
• Gather
• AllGather

• Data consolidation (about moving and aggregating or “reducing” the data)*
• Reduce
• Reduce-Scatter
• AllReduce

*We’ll assume that aggregation = sum
ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

Notation

• Number of nodes: p (=4 in most of our examples)

• Vector of data being exchanged: x

• For some operations, x is subdivided into subvectors xi, i=0, 1, .. p-1

• Superscript denotes a vector that must be summed with vectors from other nodes:

 ∑j xi
(j) indicates the sum of the subvector xi from all nodes j

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

Let’s now look at our set of collectives …

Broadcast (p=4)

Broadcast

Node 0 Node 1 Node 2 Node 3
Before

After

“send to all"

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

Scatter (p=4)

0 1 2 3

0 1 32

Scatter

Node 0 Node 1 Node 2 Node 3
Before

After

send my ith subvector
to node i

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

Gather (p=4)

0 1 2 3

0 1 32

Gather

Node 0 Node 1 Node 2 Node 3
Before

After

node i sends its
ith subvector to a target node

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

AllGather (p=4)

Node i sends its
ith subvector to all

0 1 2 3

0 1 32

AllGather

Node 0 Node 1 Node 2 Node 3
Before

After 0 1 2 3 0 1 2 3 0 1 2 3
ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

Collectives: taxonomy and key operations

• Data redistribution (about moving data)
• Broadcast
• Scatter
• Gather
• AllGather

• Data consolidation (about moving and aggregating the data)*
• Reduce
• Reduce-Scatter
• AllReduce

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

Reduce (p=4)

All nodes’ vectors are
summed at a target nodeReduce

Node 0 Node 1 Node 2 Node 3
Before

After

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

ReduceScatter (p=4)

The i^th subvector from all
nodes is summed at node i

0 1 32

0 1 2 3 0 1 2 3 0 1 2 30 1 2 3

ReduceScatter

Node 0 Node 1 Node 2 Node 3
Before

After

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

AllReduce (p=4)

1 32

0 1 2 3 0 1 2 3 0 1 2 30 1 2 3

AllReduce

Node 0 Node 1 Node 2 Node 3
Before

After 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

All nodes have the sum of
all nodes’ vectors

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

Some collectives are duals of each other

• Collectives C1 and C2 are duals if reversing the communication in C1 yields C2

• Reversing means AàB becomes BàA

• We ignore any computation when determining duality

• For a given topology/routing scheme, a collective and its dual see equivalent performance

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

Broadcast and Reduce are duals

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

Scatter and Gather are duals

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

AllGather and ReduceScatter are duals

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

AllReduce does not have a dual

Note: AllReduce = ReduceScatter + AllGather (Convince yourself of this later!)

Outline

• Context on distributed training: app and infrastructure

• Communication collectives: definitions and the function they provide

• How collectives are implemented
• We’ll focus on one collective: AllReduce

Implementing AllReduce

• Let’s consider the simplest implementation: a full mesh of node-to-node exchanges
• Every node sends its vector x directly to every other node
• Each node sums all the vectors it receives

• Assuming p nodes and that vector x is of size D bytes:
• Each node implements p-1 transmit, receive, and summation operations
• Each on a vector of size D bytes
• Total traffic in the network: O(p2 x D)
• Consider D ~100s of GB and p ~ 1000s of nodes

• Need a more scalable solution!

1 32

0 1 2 3 0 1 2 3 0 1 2 30 1 2 3

AllReduce

Node 0 Node 1 Node 2 Node 3

Before

After 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Implementing AllReduce … using overlays

• Idea: construct a virtual topology between the p nodes; “reduce” (sum) data as it traverses the overlay

• Details vary depending on the virtual topology selected

• Two typical choices: tree or ring

Tree-based AllReduce

Node 0 Node 1

Node 2 Node 3

Node 4

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4

0 1 2 3 4 0 1 2 3 4
∑

Tree-based AllReduce

Node 0 Node 1

Node 2 Node 3

Node 4

0 1 2 3 4

0 1 2 3 40 1 2 3 4

∑

Tree-based AllReduce

Node 0 Node 1

Node 2 Node 3

Node 4
0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

Tree-based AllReduce
• Nodes form a logical tree; aggregate to the root and then broadcast

• Leaf node: transmits vector to its parent
• Every intermediate node

• aggregates (sums) its own vector with that from each child node
• send the resulting (aggregated) vector to its parent

• Root broadcasts the final aggregated vector down the tree

• Assuming a binary tree with p nodes and vector of D bytes:
• AllReduce involves O(log P) steps – to travel up and down the tree
• Each node implements 3 transmit, receive, and summation operations , each on a vector of size D bytes
• Total traffic in the network: O(p x D) across all steps – much better than with the mesh!

Ring-based AllReduce
Node 0 Node 1 Node 2 Node 3 Node 4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

• Initial step: node i sends i^th subvector to its predecessor on the ring

Ring-based AllReduce
Node 0 Node 1 Node 2 Node 3 Node 4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

• Initial step: node i sends i^th subvector to its predecessor on the ring
• When a node receives the k^th subvector from its successor, it adds this to its own k^th

subvector and in the next step, sends this (aggregated) k^th subvector to its predecessor

Ring-based AllReduce
Node 0 Node 1 Node 2 Node 3 Node 4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

• Initial step: node i sends i^th subvector to its predecessor on the ring
• When a node receives the k^th subvector from its successor, it adds this to its own k^th

subvector and in the next step, sends this (aggregated) k^th subvector to its predecessor

In reality: we sent a single subvector
equal to the sum of these subvectors
(not showing the aggregated subvector
for illustration purposes only)

• Initial step: node i sends i^th subvector to its predecessor on the ring
• When a node receives the k^th subvector from its successor, it adds this to its own k^th

subvector and in the next step, sends this (aggregated) k^th subvector to its predecessor

Ring-based AllReduce
Node 0 Node 1 Node 2 Node 3 Node 4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Ring-based AllReduce
Node 0 Node 1 Node 2 Node 3 Node 4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

• Initial step: node i sends i^th subvector to its predecessor on the ring
• When a node receives the k^th subvector from its successor, it adds this to its own k^th

subvector and in the next step, sends this (aggregated) k^th subvector to its predecessor
• After p-1 steps, the successor of node i will have the fully aggregated i^th subvector

Ring-based AllReduce
Node 0 Node 1 Node 2 Node 3 Node 4

4

0

3

1

2

• Initial step: node i sends i^th subvector to its predecessor on the ring
• When a node receives the k^th subvector from its successor, it adds this to its own k^th subvector

and in the next step, sends this (aggregated) k^th subvector to its predecessor
• After p-1 steps, the successor of node i will have the fully aggregated i^th subvector
• Repeat (without aggregation); after p-1 steps all nodes have the entire reduced vector!

i Denotes sum of i^th subvector
from all nodes

Ring-based AllReduce

source: horovod paper

• Process
• Initial step: node i sends i^th chunk to its predecessor on the logical ring
• When a node receives the k^th chunk from its successor, it adds this to its own k^th chunk and in the

next step, sends this (aggregated) k^th chunk to its predecessor
• After p-1 steps, the successor of node i will have the fully aggregated i^th chunk
• Repeat but now without aggregation; after p-1 steps all nodes have the entire reduced vector!

• Assuming a ring with p nodes and vector of D bytes:
• Takes ~2p steps
• In each step, a node transmits/receives/sums a subvector of size D/p bytes
• Total traffic in the network across all steps: O(p x D)

Taking Stock

Three levels at which we can view communication collectives:

• Definition or “service model”

• Overlay viewpoint

• Underlay (physical network) viewpoint

1 32

0 1 2 3 0 1 2 3 0 1 2 30 1 2 3

AllReduce

Node 0 Node 1 Node 2 Node 3

Before

After 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Node 0 Node
1

Node 2 Node 3 Node 4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

?

Closing point:

Node 0 Node 1 Node 2 Node 3 Node 4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

?

How do we assign overlay nodes to physical GPUs so as to achieve low “stretch” (last lecture)?

Questions?

