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Recall
• Last time:  apps based on group vs. client-server interactions 
• Multicast as a communication primitive
• Implemented in the network (L3) or as an overlay (L7)
• Our context: the Internet at large 

• Today: distributed training as our app 
• Also based on groups of hosts that communicate 
• But very different context: a single datacenter, different goals, etc.
• Leading to new communication primitives: collectives



Outline 
• Quick review: Overlays

• Context on distributed training: app and infrastructure 

• Communication collectives: definitions and the function they provide

• How collectives are implemented
• Focus on one collective: AllReduce 
• Implementation at overlay and underlay level
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between virtual routers

Run routing protocols as usual (BGP, IS-IS, etc)
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Outline 

• Quick review: Overlays

• Context on distributed training: app and infrastructure 

• Communication collectives: definitions and the function they provide

• How collectives are implemented
• Focus on one collective: AllReduce 
• Implementation at overlay and underlay level
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Training: 10,000 ft. view (for CS168) 
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Trained model



Training task 

Distributed Training: 10,000 ft. view (for CS168) 
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Many options for how we parallelize the training process across compute nodes (data, model, pipeline, hybrid, etc.)Nodes exchange state before proceeding



Collective Communication 

• A group of nodes that exchange data in a coordinated manner as part of a group computation

• Nature of this exchange depends on the details of the training and its parallelization

• Distilled into a foundational set of communication patterns referred to as “collectives”

• This lecture: what are these collectives and how are they implemented in the network
• We won’t get into why training/parallelization leads to these particular patterns  



Distributed Training Infrastructure 

• Nodes are specialized Graphics Processing Units (GPUs) or Tensor Processing Units (TPUs)
• Typical scale: few 100s up to tens of 1000s

• Typically interconnected by a dedicated datacenter-like network 
• Dedicated à not shared with other jobs/apps
• Datacenter-like à 
• Physically close 
• Regular topology (Clos, Torus)
• Homogeneous
• High bandwidth
 



Distributed Training Infrastructure 

Source: Nvidia



Distributed Training Infrastructure: GPUs

Source: Nvidia



Distributed Training Infrastructure: TPUs 



Outline 

• Quick review: Overlays

• Context on distributed training: app and infrastructure 

• Communication collectives: definitions and the function they provide

• How collectives are implemented
• Focus on one collective: AllReduce 
• Implementation at overlay and underlay level



Collective Communication 

• Coordinated exchange of data between a group of nodes (as part of a group computation)

• Originally designed for supercomputers running high-performance computing (HPC) apps

• Now widely used for AI workloads 
• Nvidia Collectives Communication Library (NCCL)
• MS Azure MSCCL 
• TCCL, TE-CCL, …



A quick example for intuition 
(Will return for a deeper look shortly)  

0 1 2 3

0 1 32

Gather

Node 0 Node 1 Node 2 Node 3
Before

After



Collectives: common characteristics 

• Synchronized: nodes (GPUs/TPUs) invoke and execute the collective operation in parallel  



Collectives: common characteristics 

• Synchronized: nodes (GPUs/TPUs) invoke and execute the collective operation in parallel

• Orchestrated: centralized job scheduler distributes membership info, member IDs, roles, etc.

• Homogeneous: all nodes have same resources (compute, BW) and running same code 

• Blocking (implicit or explicit): collective must complete at all nodes before proceeding

• Data may be transformed at intermediate hops in the communication path 



Collectives: taxonomy and key operations  

• Data redistribution (about moving data)
• Broadcast 
• Scatter 
• Gather
• AllGather

• Data consolidation (about moving and aggregating or “reducing” the data)* 
• Reduce
• Reduce-Scatter
• AllReduce

*We’ll assume that aggregation = sum
ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf


Notation

• Number of nodes: p (=4 in most of our examples)

• Vector of data being exchanged: x

• For some operations, x is subdivided into subvectors xi, i=0, 1, .. p-1

• Superscript denotes a vector that must be summed with vectors from other nodes:

 ∑j xi
(j) indicates the sum of the subvector xi from all nodes j 

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf


Let’s now look at our set of collectives … 



Broadcast (p=4)

Broadcast

Node 0 Node 1 Node 2 Node 3
Before

After

“send to all"

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf


Scatter (p=4)

0 1 2 3

0 1 32

Scatter

Node 0 Node 1 Node 2 Node 3
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After

send my ith subvector 
to node i

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf


Gather (p=4)

0 1 2 3

0 1 32

Gather

Node 0 Node 1 Node 2 Node 3
Before

After

node i sends its 
ith subvector to a target node

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf


AllGather (p=4)

Node i sends its 
ith subvector to all

0 1 2 3

0 1 32

AllGather

Node 0 Node 1 Node 2 Node 3
Before

After 0 1 2 3 0 1 2 3 0 1 2 3
ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf


Collectives: taxonomy and key operations  

• Data redistribution (about moving data)
• Broadcast 
• Scatter 
• Gather
• AllGather

• Data consolidation (about moving and aggregating the data)* 
• Reduce
• Reduce-Scatter
• AllReduce

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf


Reduce (p=4)

All nodes’ vectors are 
summed at a target nodeReduce

Node 0 Node 1 Node 2 Node 3
Before

After

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf


ReduceScatter (p=4)

The i^th subvector from all 
nodes is summed at node i

0 1 32

0 1 2 3 0 1 2 3 0 1 2 30 1 2 3

ReduceScatter

Node 0 Node 1 Node 2 Node 3
Before

After

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf


AllReduce (p=4)

1 32

0 1 2 3 0 1 2 3 0 1 2 30 1 2 3

AllReduce

Node 0 Node 1 Node 2 Node 3
Before

After 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

All nodes have the sum of 
all nodes’ vectors

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf


Some collectives are duals of each other

• Collectives C1 and C2 are duals if reversing the communication in C1 yields C2

• Reversing means AàB becomes BàA

• We ignore any computation when determining duality

• For a given topology/routing scheme, a collective and its dual see equivalent performance

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf


Broadcast and Reduce are duals

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf


Scatter and Gather are duals

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf


AllGather and ReduceScatter are duals

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf


AllReduce does not have a dual

Note: AllReduce = ReduceScatter + AllGather (Convince yourself of this later!)



Outline 

• Context on distributed training: app and infrastructure 

• Communication collectives: definitions and the function they provide

• How collectives are implemented
• We’ll focus on one collective: AllReduce



Implementing AllReduce

• Let’s consider the simplest implementation: a full mesh of node-to-node exchanges 
• Every node sends its vector x directly to every other node
• Each node sums all the vectors it receives

• Assuming p nodes and that vector x is of size D bytes:
• Each node implements p-1 transmit, receive, and summation operations 
• Each on a vector of size D bytes
• Total traffic in the network: O(p2 x D)
• Consider D ~100s of GB and p ~ 1000s of nodes

• Need a more scalable solution! 

1 32

0 1 2 3 0 1 2 3 0 1 2 30 1 2 3

AllReduce

Node 0 Node 1 Node 2 Node 3

Before

After 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3



Implementing AllReduce … using overlays

• Idea: construct a virtual topology between the p nodes; “reduce” (sum) data as it traverses the overlay

• Details vary depending on the virtual topology selected

• Two typical choices: tree or ring 



Tree-based AllReduce

Node 0 Node 1

Node 2 Node 3
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Tree-based AllReduce

Node 0 Node 1

Node 2 Node 3

Node 4
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0 1 2 3 40 1 2 3 4

∑



Tree-based AllReduce

Node 0 Node 1

Node 2 Node 3

Node 4
0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4



Tree-based AllReduce
• Nodes form a logical tree; aggregate to the root and then broadcast 

• Leaf node: transmits vector to its parent
• Every intermediate node 

• aggregates (sums) its own vector with that from each child node
• send the resulting (aggregated) vector to its parent 

• Root broadcasts the final aggregated vector down the tree 

• Assuming a binary tree with p nodes and vector of D bytes:
• AllReduce involves O(log P) steps – to travel up and down the tree
• Each node implements 3 transmit, receive, and summation operations , each on a vector of size D bytes
• Total traffic in the network: O(p x D) across all steps – much better than with the mesh!



Ring-based AllReduce
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• Initial step: node i sends i^th subvector to its predecessor on the ring



Ring-based AllReduce
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• Initial step: node i sends i^th subvector to its predecessor on the  ring
• When a node receives the k^th subvector from its successor, it adds this to its own k^th 

subvector and in the next step, sends this (aggregated) k^th subvector to its predecessor



Ring-based AllReduce
Node 0 Node 1 Node 2 Node 3 Node 4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

• Initial step: node i sends i^th subvector to its predecessor on the  ring
• When a node receives the k^th subvector from its successor, it adds this to its own k^th 

subvector and in the next step, sends this (aggregated) k^th subvector to its predecessor

In reality: we sent a single subvector 
equal to the sum of these subvectors
(not showing the aggregated subvector
for illustration purposes only)



• Initial step: node i sends i^th subvector to its predecessor on the  ring
• When a node receives the k^th subvector from its successor, it adds this to its own k^th 

subvector and in the next step, sends this (aggregated) k^th subvector to its predecessor
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Ring-based AllReduce
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• Initial step: node i sends i^th subvector to its predecessor on the  ring
• When a node receives the k^th subvector from its successor, it adds this to its own k^th 

subvector and in the next step, sends this (aggregated) k^th subvector to its predecessor
• After p-1 steps, the successor of node i will have the fully aggregated i^th subvector



Ring-based AllReduce
Node 0 Node 1 Node 2 Node 3 Node 4
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• Initial step: node i sends i^th subvector to its predecessor on the  ring
• When a node receives the k^th subvector from its successor, it adds this to its own k^th subvector 

and in the next step, sends this (aggregated) k^th subvector to its predecessor
• After p-1 steps, the successor of node i will have the fully aggregated i^th subvector
• Repeat (without aggregation); after p-1 steps all nodes have the entire reduced vector!

i Denotes sum of i^th subvector
from all nodes



Ring-based AllReduce

source: horovod paper

• Process 
• Initial step: node i sends i^th chunk to its predecessor on the logical ring
• When a node receives the k^th chunk from its successor, it adds this to its own k^th chunk and in the 

next step, sends this (aggregated) k^th chunk to its predecessor
• After p-1 steps, the successor of node i will have the fully aggregated i^th chunk 
• Repeat but now without aggregation; after p-1 steps all nodes have the entire reduced vector!

• Assuming a ring with p nodes and vector of D bytes:
• Takes ~2p steps 
• In each step, a node transmits/receives/sums a subvector of size D/p bytes
• Total traffic in the network across all steps: O(p x D) 



Taking Stock

Three levels at which we can view communication collectives:

• Definition or “service model”

• Overlay viewpoint

• Underlay (physical network) viewpoint
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Closing point: 
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How do we assign overlay nodes to physical GPUs so as to achieve low “stretch” (last lecture)?



Questions?


