(5168, Fall 2024

Beyond Client-Server (part 2)
Collective Communication

Sylvia Ratnasamy

Recall

» Last time: apps based on group vs. client-server interactions
e Multicast as a communication primitive
* Implemented in the network (L3) or as an overlay (L7)
* Qur context: the Internet at large

» Today: distributed training as our app
» Also based on groups of hosts that communicate
« But very different context: a single datacenter, different goals, etc.
» Leading to new communication primitives: collectives

Outline

e Quick review: Overlays

« Context on distributed training: app and infrastructure

« Communication collectives: definitions and the function they provide

* How collectives are implemented
« Focus on one collective: AllReduce
« Implementation at overlay and underlay level

Reviewing overlavs ...

A A’ IP addr
E E's IP addr e

Physical router \,@} E/@/

R1's neighbors Connected by
physical links

A virtual network (the “overlay”) on top of an underlying physical network (the “underlay”)

Reviewing overlays

-
-
-
-
-

-
-
-
-

A virtual network (the “overlay”) on top of an underlying physical network (the “underlay”)

Reviewing overlays

Run a routing protocol ‘)G
. Rt e
between virtual routers Q‘ ------- ﬁ_ﬁ

Run routing protocols as usual (BGP, IS-IS, etc)

-
-
-
-
-

-
-
-
-

Reviewing overlays

Overlay routing table Overlay path

Underlay routing tables : o
prefix1 R2 \

prefiix2 R3

prefix3 R2 As seen by the underlay

Reviewing overlays

Src=A,
dst=F

src=D,
dst=E

Outline

« Context on distributed training: app and infrastructure

« Communication collectives: definitions and the function they provide

* How collectives are implemented
« Focus on one collective: AllReduce
« Implementation at overlay and underlay level

Training: 10,000 ft. view (for C5168)

Trained model

Distributed Training: 10,000 ft. view (for C5168)

ey NN N
ooaser o [Y Y

ooase = [— Y

ooaser = [N \\ \

\

Many options for how we paralleliz Nodes exchange state before proceeding ita, model, pipeline, hybrid, etc.)

Collective Communication

« A group of nodes that exchange data in a coordinated manner as part of a group computation
« Nature of this exchange depends on the details of the training and its parallelization

« Distilled into a foundational set of communication patterns referred to as “collectives”

e This lecture: what are these collectives and how are they implemented in the network
« We won't get into why training/parallelization leads to these particular patterns

Distributed Training Infrastructure

» Nodes are specialized Graphics Processing Units (GPUs) or Tensor Processing Units (TPUS)
* Typical scale: few 100s up to tens of 1000s

* Typically interconnected by a dedicated datacenter-like network
» Dedicated - not shared with other jobs/apps
e Datacenter-like =
e Physically close
* Regular topology (Clos, Torus)
* Homogeneous
e High bandwidth

Distributed Training Infrastructure

System

s '"°ry GDDRS GDDR5 GDDRS
. Memo Memory Memo
| 1 2

PCl-e

Network

Network ‘ - Network
Card 4 Card

Server 1 Server 2

Source: Nvidia

Distributed Training Infrastructure: GPUs

GPU4 GPU5 GPU6 GPU7

GPUO

GPU1 GPU2
NVSWITCH

GPU4 GPU5 GPU6 GPU7

DGX-B

Source: Nvidia

Distributed Training Infrastructure: TPUs

- -

Y+[<|31[3] | | Y+[|3][3]
0313 133 233 333 e X +[3][3
I I I | G

032 132 an 352
Y+[0T0 | l I | 323
................. TensorCore Y| (U= e o e e
Core Sequencer | I | | 2
: : 03 130 230 330 I3
5 <«—p Matrix Multiply / P 4 s/ /7 EY T —
HBM | Vector Interconnect PO /ozo /sz /zzo /m - 303 == X +[0][3]
Memory |g—pi| Unit Matrix Multiply |iq__, Router v 31—
(8/16 GiB) ;| (VPU) (MXU) : (ICT) 302 je
: L 010 10 21 110
Transpose / d / / 301 e
Permute Unit |
 — > 000 100 200 200 X+[0][0]

0 ol Al W

\V»..\'\'

Outline

« Communication collectives: definitions and the function they provide

* How collectives are implemented
« Focus on one collective: AllReduce
« Implementation at overlay and underlay level

Collective Communication

« Coordinated exchange of data between a group of nodes (as part of a group computation)
« Originally designed for supercomputers running high-performance computing (HPC) apps

« Now widely used for Al workloads
« Nvidia Collectives Communication Library (NCCL)

o MS Azure MSCCL
o TCCL, TE-CCL, ...

A quick example for intuition

(Will return for a deeper look shortly)

Before

After

Node 0

Node 1

Node 2

2

Gather

Collectives: common characteristics

« Synchronized: nodes (GPUs/TPUs) invoke and execute the collective operation in parallel

Machine 1 Machine 2
comm = communicator.create() comm = communicator.create()
a =[1, 2, 3] a=1[1, 0, 1]
b = comm,allreduce(a, op:sum) b = comm.allreduce(a, op=sum)

assert b == [2, 2, 4] assert b == [2, 2, 4]

Collectives: common characteristics

« Synchronized: nodes (GPUs/TPUs) invoke and execute the collective operation in parallel

» Orchestrated: centralized job scheduler distributes membership info, member IDs, roles, etc.
 Homogeneous: all nodes have same resources (compute, BW) and running same code

« Blocking (implicit or explicit): collective must complete at all nodes before proceeding

» Data may be transformed at intermediate hops in the communication path

Collectives: taxonomy and key operations

« Data redistribution (about moving data)
* Broadcast
o Scatter
 Gather
o AllGather

» Data consolidation (about moving and aggregating or “reducing” the data)”
e Reduce

 Reduce-Scatter
e AllReduce

"We'll assume that aggregation = sum

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

Notation

 Number of nodes: p (=4 in most of our examples)
« Vector of data being exchanged: x

« For some operations, xis subdivided into subvectors x;, i=0, 1, .. p-1

« Superscript denotes a vector that must be summed with vectors from other nodes:

2, %1 indicates the sum of the subvector x; from all nodes

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

Let's now look at our set of collectives ...

Broadcast (p=4)

Operation Before After
Node 0 | Node 1 | Node 2 | Node 3 Node 0 | Node 1 | Node 2 | Node 3
Broadcast
x| | | z | oz | z | @
Node 0 Node 1 Node 2 Node 3
Before
Broadcast “send to all”
After = = B

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

Scatter (p=4)

Operation Before After
Node 0O Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3
xo)
Scatter xr1 xr1
xTro T2
xs3 L3
Node 0 Node 1 Node 2 Node 3
Before
\ send my ith subvector
Scatter to node i
Ater [A Z] B

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

Gather (p=4)

Operation Before After
Node 0O Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3
o Z0
Gather T T
T2 T2
xrs T3
Node 0 Node 1 Node 2 Node 3
Before 2 i
W node i sends its
Gather ith subvector to a target node
After R

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

AllGather (p=4)

Operation Before After
Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3
o xo Zo o o
Allgather T 1 1 1 1
o xr9 xr2 T2 T2
xr3 xr3 xr3 xrs3 xr3
Node 0 Node 1 Node 2 Node 3
Before 2 S
W Node i sends its
ith
AllGather it" subvector to all
After

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

Collectives: taxonomy and key operations

» Data consolidation (about moving and aggregating the data)”
e Reduce

 Reduce-Scatter
e AllReduce

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

Reduce (p=4)

Operation Before After
4 Node 0 | Node 1 | Node 2 | Node 3 Node 0 | Node 1 | Node 2 | Node 3
Reduce(- 20 | 2D | 2@ | z0® o MON | |
to-one)
Node 0 Node 1 Node 2 Node 3
oy Ehnid B Hnne Ty |) ey By Eere |
Before = B i |
W All nodes’ vectors are
Reduce summed at a target node
After

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

ReduceScatter (p=4)

Operation Before After
Node 0 Node 1 Node 2 Node 3 Node 0O Node 1 Node 2 Node 3
3380) xél) x(()z) :z;(()3) Y xéﬂ) |
Reduce- a:io) a:gl) 51352) ngS) 2 x(lj) ,
scatter CE;O) :Eél) xéQ) CCéB) > :I;éj)
0] 1 2 3 ;
20 »(D e e s, 2§
Node 0 Node 1 Node 2 Node 3
Before o 0l1 3
\M// The i“th subvector from all
ReduceScatter nodes is summed at node i
After 0 1 Z\T 3

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

AllReduce (p=4)

Operation Before After
Allred Node 0 | Node 1 | Node 2 | Node 3 Node 0 | Node 1 | Node 2 | Node 3
reauce 5 g g g :
2(0) | (1) | 7(2) | 2(3) Y 2(7) | Y, 2(7) | Y, 2(7) | Y, 2(7)
Node 0 Node 1 Node 2 Node 3
Before =5 0]1]2]3]| [B
AllReduce All nodes have the sum of
%\ all nodes’ vectors
After 0f112]3 0111213 011213 0{1(2]3

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

Some collectives are duals of each other

* Collectives C1 and C2 are duals if reversing the communication in C1 yields C2

* Reversing means A=>B becomes B>A

« We ignore any computation when determining duality

« For a given topology/routing scheme, a collective and its dual see equivalent performance

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

Broadcast and Reduce are duals

Operation Before After
Node 0 | Node 1 | Node 2 | Node 3 Node 0 | Node 1 | Node 2 | Node 3
Broadcast
x| | | "2 I T B
4 Node 0 | Node 1 | Node 2 | Node 3 Node 0 | Node 1 | Node 2 | Node 3
Reduce(- 20 | 2D | 2@ | 2O > () | | |
to-one)

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

Scatter and Gather are duals

Operation Before After
Node 0 Node 1 Node 2 Node 3 Node 0O Node 1 Node 2 Node 3
X0 Zo
Scatter Tl T
L2 L2
3 3
Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3
o o
Gather 1 T1
2 2
3 3

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

AllGather and ReduceScatter are duals

Operation Before After
Node O Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3
xo xo o Zo Zo
Allgather T T 1 T T
xro o xr2 xr2 L2
rs3 r3 r3 xr3 3
Node 0 Node 1 Node 2 Node 3 Node 0O Node 1 Node 2 Node 3
; (7)
E L S B RS BT R
Reduce- 33(10) asgl) 3352) azg“” 25 ai‘gj)
scatter xéo) xél) xéQ) még’) 5 xéﬂ)
(0) (1) (2) (3) '
T3 &3 T3 T)3F ;péj)

ref: Chan et al. Concurrency and Practice, 2007

https://www.cs.utexas.edu/~pingali/CSE392/2011sp/lectures/Conc_Comp.pdf

AlIReduce does not have a dual

Note: AllReduce = ReduceScatter + AllGather (Convince yourself of this later!)

Outline

» How collectives are implemented
« We'll focus on one collective: AllReduce

B D u D t D) Node 0 Node 1 Node 2 Node 3

Before ol1l213]

oftf2t3] |ol1]2]3| [etEEEEs:

Implementing AllReduce

AllReduce

After Jol11213] tofxl213] tolxl2]3] |ol1]2]3

e Let’s consider the simplest implementation: a full mesh of node-to-node exchanges
* Every node sends its vector x directly to every other node
e Each node sums all the vectors it receives

« Assuming p nodes and that vector xis of size D bytes:
e Each node implements p-7 transmit, receive, and summation operations
« Each on a vector of size D bytes
« Total traffic in the network: O(p? x D)
« Consider D ~100s of GB and p ~ 1000s of nodes

e Need a more scalable solution!

Implementing AllReduce ... using overlays

* |dea: construct a virtual topology between the p nodes; “reduce” (sum) data as it traverses the overlay
» Details vary depending on the virtual topology selected

* Two typical choices: tree or ring

Tree-based AllReduce

Tree-based AllReduce

Node 2

Node 0 Node 1

Tree-based AllReduce

Tree-based AllReduce

« Nodes form a logical tree; aggregate to the root and then broadcast
* Leaf node: transmits vector to its parent

* Every intermediate node
* aggregates (sums) its own vector with that from each child node
« send the resulting (aggregated) vector to its parent

* Root broadcasts the final aggregated vector down the tree

e Assuming a binary tree with p nodes and vector of D bytes:
* AllReduce involves O(log P) steps — to travel up and down the tree
« Each node implements 3 transmit, receive, and summation operations , each on a vector of size D bytes
« Total trafficin the network: O(p x D) across all steps — much better than with the mesh!

Ring-based AllReduce

Node 0 Node 1 Node 2 Node 3 Node 4
<_HE £ [o] [l [
B —] E

& & B

E +—[3] E

E [(] —

« [nitial step: node i sends i*th subvector to its predecessor on the ring

Ring-based AllReduce

Node 0 Node 1 Node 2 Node 3 Node 4
(2] [o] EH ——BE
< EE = (1]
g «——EC] =
E —[]E B
B — EE

e Initial step: node i sends i*th subvector to its predecessor on the ring

* When a node receives the k"th subvector from its successor, it adds this to its own k”th
subvector and in the next step, sends this (aggregated) k*th subvector to its predecessor

In reality: we sent a single subvector
equal to the sum of these subvectors

[]
Ring-based AllReduce o ey

Node 0 Node 1 Node 2 Node 3 Node 4
~@ o——Oo
—
] «— EEE
E D R— ﬁ@ ke
Z_ B EEE E 2
B — EGIE [3]
= — [

e Initial step: node i sends i*th subvector to its predecessor on the ring

* When a node receives the k"th subvector from its successor, it adds this to its own k”th
subvector and in the next step, sends this (aggregated) k*th subvector to its predecessor

Ring-based AllReduce

Node 0 Node 1 Node 2 Node 3 Node 4

@ O o

o] — L EEE
— EBEE
B —EBEEEL
—EE:EE E
B —ElIEE

e Initial step: node i sends i*th subvector to its predecessor on the ring

* When a node receives the k"th subvector from its successor, it adds this to its own k”th
subvector and in the next step, sends this (aggregated) k*th subvector to its predecessor

Ring-based AllReduce

Node 0 Node 1 Node 2 Node 3 Node 4
felle] ElEE E
LEEE

EEEE

BEELIEE

e Initial step: node i sends i*th subvector to its predecessor on the ring

* When a node receives the k"th subvector from its successor, it adds this to its own k”th
subvector and in the next step, sends this (aggregated) k*th subvector to its predecessor

« After p-1 steps, the successor of node i will have the fully aggregated i*th subvector

Denotes sum of iAth subvector
from all nodes

Ring-hased AllReduce

Node 0 Node 1 Node 2 Node 3 Node 4

Ln

« Initial step: node i sends i*th subvector to its predecessor on the ring

» When a node receives the k"th subvector from its successor, it adds this to its own k"th subvector
and in the next step, sends this (aggregated) k*th subvector to its predecessor

« After p-1 steps, the successor of node i will have the fully aggregated i*th subvector
* Repeat (without aggregation); after p-1 steps all nodes have the entire reduced vector!

Ring-hased AllReduce

* Process
« Initial step: node i sends i*th chunk to its predecessor on the logical ring

 When a node receives the k*th chunk from its successor, it adds this to its own k”th chunk and in the
next step, sends this (aggregated) k*th chunk to its predecessor

o After p-1 steps, the successor of node i will have the fully aggregated i*th chunk
* Repeat but now without aggregation; after p-1 steps all nodes have the entire reduced vector!

* Assuming a ring with p nodes and vector of D bytes:
* Takes~2psteps
* In each step, a node transmits/receives/sums a subvector of size D/p bytes
» Total traffic in the network across all steps: O(p x D)

source: horovod paper

Taking Stock

Node 0 Node 1 Node2 Node3

Before fopitotsl fofifafs

Three levels at which we can view communication collectives:

e Definition or “service model”

* Qverlay viewpoint —— o—eo—
k] ExEaE
LEEREm
EEEEEL]
EELEIGIE
EBEEIEEs

e Underlay (physical network) viewpoint

Closing point:

Node 0

Node 1 Node 2 Node 3 Node 4

@

[EEE

EE E E) NiC3 NICO NIC1 NIC2

EEE PU1 GPU2

NVSWITCH
GPU4 GPU5 GPU6 GPU7 GPU4 GPU5 GPU6 GPU7
m - - m— —Iﬁlﬁl - Ni Cé Iilﬂ
DGX-A DGX-B

How do we assign overlay nodes to physical GPUS so as to achieve low “stretch” (last lecture)?

Questions?

