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Lecture Topics

● What is host networking and why it matters in the datacenter

● The role of Network Interface Cards (NICs)

● Interfacing with applications using Remote Direct Memory Access (RDMA)
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End-to-End performance of applications within the datacenter 

ToR ToR

Host Host Host Host

Driver 1: 
Datacenter applications demand high 
bandwidth and low latency

Driver 2: 
Server CPUs dominate datacenter costs 
→ efficient use of CPUs is important!

Problem: 
Traditional host networking stacks 
struggle to deliver high bandwidth and 
low latency with low CPU overhead.



This lecture

● More about system implementation than network architecture or algorithms 

● Opportunity to practice reasoning about system performance



This lecture

● More about system implementation than network architecture or algorithms 

● Opportunity to practice reasoning about system performance

● Themes:
○ Hardware that is “specialized” for a given function is generally cheaper, faster, and lower power 

than using general-purpose processors for that same function
■ Why we use GPUs/TPUs for AI applications instead of x86 CPUs
■ Why we use specialized packet processing hardware in routers

○ Operating systems are large and complex codebases → introduce unwanted perf overheads 
■ E.g., due to scheduling, interrupt handling, etc.  



Why host networking matters in the datacenter: a closer look (1) 

Technology specs
● CPU speed: ~3GHz
● Link speeds: 10Gbps
● Propagation speed = 5 nanosecs/meter (speed of light in fiber)

Assumptions
● 1000 byte packet 
● 5 switch hops between sending and receiving machines
● Average queue length at a switch = 10 packets 
● Machines are 100 meters apart 

Sending 
Host

Receiving 
Host

Circa 2011 [ref]

Per-component delays
● Per switch: ~10 microsecs

○ Transmission: 0.8 microsecs (8000 bits @10Gbps) 
○ Queueing: 10 x 0.8 = 8 microsecs
○ Switching: 1 microsecs

● Per-host: 10 microsecs 
Round-trip delay

● Switch time: 10 hops  x 10 /hop = 100 microsecs (5 hops each way)
● Per-host: 10 x 4 = 40 microsecs (4 traversals through OS)
● Propagation delay = 1 microsec (5 nanosecs/meter x 100 meter x 2)

Takeaway#1: host networking is a non-trivial contributor to end-to-end latency 

https://www.usenix.org/legacy/events/hotos11/tech/final_files/Rumble.pdf


Why host networking matters in the datacenter: a closer look (2) 

Technology specs
● CPU speed: ~3GHz
● Link speeds: 10Gbps
● Propagation speed = 5 nanosecs/meter (speed of light in fiber)

Assumptions
● 1000 byte packet 
● 5 switch hops between sending and receiving machines
● Average queue length at a switch = 10 packets 
● Machines are 100 meters apart 

Sending 
Host

Receiving 
Host

Circa 2011 [ref]

Per-component delays
● Per switch: ~10 microsecs

○ Transmission: 0.8 microsecs (8000 bits @10Gbps) 
○ Queueing: 10 x 0.8 = 8 microsecs
○ Switching: 1 microsecs

● Per-host: 10 microsecs 
Round-trip delay

● Switch time: 10 hops  x 10 /hop = 100 microsecs (5 hops each way)
● Per-host: 10 x 4 = 40 microsecs (4 traversals through OS)
● Propagation delay = 1 microsec (5 nanosecs/meter x 100 meter x 2)

Technology specs
● CPU speed: ~3GHz (Moore’s law ended!)
● Link speeds: 1000 Gbps 
● Propagation speed = 5 nanosecs/meter 

Projected 2026 [ref]

Per-component delays
● Per switch: ~1 microsecs

○ Transmission: 0.008 microsecs 
○ Queueing: 10 x 0.008 = 0.08 microsecs
○ Switching: 1 microsecs

● Per-host: 10 microsecs 
Round-trip delay

● Switch time: 10 x 1 = 10 microsecs 
● Per-host: 10 x 4 = 40 microsecs 
● Propagation delay = 1 microsec 

Takeaway#2: technology trends make host networking overheads a growing problem

https://www.usenix.org/legacy/events/hotos11/tech/final_files/Rumble.pdf
https://www.cs.cornell.edu/~ragarwal/pubs/network-stack.pdf


Why host networking matters in the datacenter: a closer look (3) 

Technology specs
● CPU speed: ~3GHz
● Link speeds: 10Gbps
● Propagation speed = 5 nanosecs/meter (speed of light in fiber)

Assumptions
● 1000 byte packet 
● 5 switch hops between sending and receiving machines
● Average queue length at a switch = 10 packets 
● Machines are 100 meters apart 

Sending 
Host

Receiving 
Host

Circa 2011 [ref]

CPU overhead to drive a 10Gbps link
● 1 3GHz CPU core can achieve ~20Gbps throughput 
● Hence, need ½  a CPU core to drive a 10Gbps link

Technology specs
● CPU speed: ~3GHz (Moore’s law ended!)
● Link speeds: 1000 Gbps 
● Propagation speed = 5 nanosecs/meter 

Projected 2026 [ref]

Takeaway#3: traditional host networking stacks consume too many CPU resources!

CPU overhead to drive a 1000 Gbps link
● 1 3GHz CPU core can achieve ~20Gbps throughput 
● Would need 50 CPU cores to drive a 1000 Gbps link!

https://www.usenix.org/legacy/events/hotos11/tech/final_files/Rumble.pdf
https://www.cs.cornell.edu/~ragarwal/pubs/network-stack.pdf


Recap: Why host networking needs (more) attention in the datacenter

Drivers
● Datacenter applications want low latency and high throughput 
● Server CPU resources dominate datacenter costs 

Tech trends
● Datacenter networks enjoy low propagation delay and high bandwidth 
● Link bandwidth continues to increase with every generation (~10x every 7-8 years)
● But CPUs are not getting faster (slowing / ending of Moore’s law)

Implications 
● Host networking is a significant contributor to end-to-end latency

○ Tech trend: latency due to switches is decreasing while the latency due to hosts is not
● Host networking consumes a significant amount of server CPU resources 

○ Tech trend: as link bandwidth increases, so do the CPU resources needed to drive the link

Rest of this lecture: a closer look at host networking and what we can do to address these problems



Questions?



Traditional Networking Stack in Operating System 
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Recap: traditional network stacks in the OS

● Problem#1: high performance overheads due to: 
○ Lots of data copies (between user-space and kernel, kernel and NIC)
○ Per-packet processing in software (checksums, CC, loss recovery, encryption, etc.)

● These introduce latency and consume CPU cycles

● Problem#2: kernel development and deployment is painful
○ Kernel code is complex, with a distributed developer ecosystem 
○ Upgrades require machine reboots

● Two common optimizations: “bypass” stacks and NIC “offload”



1) Operating System “Bypass” Stacks

Key idea: implement the host 
networking stack in user space 
and avoid using OS networking 
components (“bypass”) 
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● Key idea: implement the network stack as a user space process 
○ Packet processing operations implemented in user space
○ With shared memory between the application and network stack
○ E.g., Intel DPDK, AWS EFA, Google Snap

● Benefits 
○ Avoids copying data between the application and network stack 
○ Larger developer pool and simpler deployment process (does not require machine reboots)

● But only a partial solution: bypass stack still consumes CPU cycles for packet processing 

1) Operating System “Bypass” Stacks

https://www.dpdk.org/
https://aws.amazon.com/blogs/aws/now-available-elastic-fabric-adapter-efa-for-tightly-coupled-hpc-workloads/
https://research.google/pubs/snap-a-microkernel-approach-to-host-networking/


2) “Offload” the Network Stack to the Network Interface Card

Can we implement some 
portions of packet 
processing in the NIC?
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● Key idea: move packet processing functions from the host’s CPU to the NIC
○ Idea can be applied to kernel- or user-space host networking stacks

● Benefits 
○ Frees up host CPU cycles that are otherwise consumed for host networking
○ NIC can use hardware specialized for networking → cheaper, faster, lower power than host CPUs 

● These benefits fueled the development of “smart NIC” technology
○ E.g., Nvidia BlueField, Marvell Octeon, AWS Nitro, AMD Pensando

● A few different options for how much of the networking stack we offload (coming up)
○ Tradeoff: performance and efficiency benefits vs. NIC complexity and specialization

2) “Offload” the Network Stack to the Network Interface Card



Lecture Outline

What is Host Networking 
and Why it Matters

● Learnt before: network stack in the OS implements reliability, congestion control, flow control, etc.
● Problem in datacenters: extreme perf. requirements; valuable CPU cores; kernel development hard.
● Host networking in datacenters is heavily optimized for application performance and CPU efficiency.
● Optimization opportunities: OS bypass, and offloads to the NIC

The Role of Network 
Interface Cards (NICs)

Remote Direct Memory 
Access



Questions?



Lecture Topics

● What is Host Networking and Why it Matters

● The Role of Network Interface Cards (NICs)

● Interfacing with Applications using Remote Direct Memory Access (RDMA).

(Ref: IETF Talk)

https://www.youtube.com/watch?v=wHM7RVk3-yk
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Life of Packet in the NIC
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Life of Packet in the NIC
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Life of Packet in the NIC
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● Free up host CPU cycles for applications
○ Network processing and applications no longer contend for CPU 

● Efficiency
○ Specialized hardware can be more efficient in cost and power 

(vs. general-purpose CPU)

● Performance
○ Scaling throughput
○ Predictable low latency

Why Offload?



Spectrum of Offloads to the NIC

● Epoch 1 - Basic support 
○ Simple stateless functions 

● Epoch 2 - Accelerating the dataplane 
○ More complex stateful offloads 

● Epoch 3 - Protocol Offloads 
○ Offload the entire protocol state machine (e.g., TCP, RDMA)



Epoch 1: Simple, Stateless Offloads of Network Processing

Typically, operations that can be applied on individual packets without 
per-flow state or application-level information

Examples: 
● Checksum Offload: compute the checksum on transmit; verify the checksum 

on receive [Example]

● Segmentation Offload: split large packets into MTU-sized ones on transmit; 
coalesce small packets into a large packet on receive

https://en.wikipedia.org/wiki/Internet_checksum#Calculating_the_IPv4_header_checksum


Segmentation Offload

● Recall: TCP sends packets with “max segment size” (MSS) bytes 
○ MSS picked based on link MTU (Maximum Transmission Unit)

● With Segmentation Offload: Host CPU sends/receives a much larger packet (>> MTU) 
and the NIC converts it into multiple smaller (~MTU sized) ones

○ E.g., host sends the NIC a 128KB packet and the NIC segments them into 1KB packets 



Transmit Segmentation Offload (TSO)

● Split big packets into MTU sized ones.
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Receive Segmentation Offload (RSO)

● Coalesce small packets into bigger ones.
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Why offload segmentation?

● Allows the host networking stack to process fewer (though larger) packets
○ 10Gbps with 1 kilobyte packets → 1,250,000 packets per second 
○ 10Gbps with 1 megabyte packets → 1,250 packets per second



Why offload segmentation?

● Allows the host networking stack to process fewer (though larger) packets
○ 10Gbps with 1 kilobyte packets → 1,250,000 packets per second 
○ 10Gbps with 1 megabyte packets → 1,250 packets per second

● Analogy: one shopping trip for N items vs. N shopping trips

● Some packet processing overheads depend on the length of the packet (e.g., checksum)
○ Still incurred with segmentation offload

● But many overheads don’t; only incurred once per packet (e.g., interrupts, add/rm headers) 
○ This portion of the overhead decreases if we send fewer packets!

● Hence, host can drive the same bandwidth while consuming fewer host CPU cycles 



Epoch 2: Stateful offloads 

Simple functions that require per-flow or pre-user state:
● Virtual Routing Tables: e.g., forwarding entries for Coke vs. Pepsi VMs (last lecture)
● Rate limiting: e.g., enforcing tenant bandwidth limits (requires per-tenant counters)
● Access Control Lists: e.g., ensuring packets from Coke VMs can’t reach Pepsi VMs 



Epoch 3: Protocol Offloads

● Offload all of host networking to the NIC?

● Two broad approaches:
○ A new abstraction altogether: RDMA (coming up)
○ Retain TCP’s abstraction, but offload the 

TCP/IP/Ethernet stack to the NIC

Network Interface Card

???

Application
Data

Hardware

Userspace 
??? 



Lecture Outline

What is Host Networking 
and Why it Matters

The Role of Network 
Interface Cards (NICs)

● What is the role of a NIC?
● What are offloads and why are they important?
● Offloads on a spectrum:

○ Simple offloads like checksum, segmentation.
○ More complex offloads that maintain per-flow or per-tenant state
○ Most complex: offload the entire protocol, e.g. TCP, RDMA.

Remote Direct Memory 
Access

● Learnt before: network stack in the OS implements reliability, congestion control, flow control, etc.
● Problem in datacenters: extreme perf. requirements; valuable CPU cores; kernel development hard.
● Host networking in datacenters is heavily optimized for application performance and CPU efficiency.
● Optimization opportunities: OS bypass, and offloads to the NIC



RDMA: Topics we will cover

● An overview of RDMA
● RDMA pros, cons, and applications
● The RDMA abstraction
● A walk through of an RDMA Send operation



Remote Direct Memory Access (RDMA)

● Originally developed as a network abstraction for supercomputer environments 
○ Alternative to the TCP/IP network abstraction 

● Goals: high performance and efficiency for “tightly coupled” distributed applications 

● Increasingly prevalent in datacenter and AI/ML environments

● What RDMA offers: Direct transfer of data from application memory at server A to 
application memory at server B without consuming CPU time at server A or B



Reminder: high level view of the internals of a server
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Data transfers without RDMA
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CPU is involved in moving data between memory and the NIC at both the 
sender and receiver 



Data transfers with RDMA
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Pros and Cons of RDMA

Pros
● CPU efficiency: CPUs are minimally involved in data transfers* 
● High performance low latency, high bandwidth data transfers 

Cons
● More complex than traditional networking

● More limited ecosystem: RDMA requires specialized hardware and software

○ Not backwards compatible with TCP/IP applications.

○ Typically used between hosts that are in close proximity and coordination 

For example: reduced CPU consumption due to host networking ~20% to < 1% 

https://www.youtube.com/watch?v=CJP1rJnPVG8


Applications of RDMA

● High Performance Computing (HPC) applications
○ Scientific simulations: astrophysics, biological systems, weather forecasting, etc.
○ Key driver: all the benefits of RDMA (low latency, high throughput, CPU efficiency) 

● Low Latency applications
○ ML inference, search queries, financial applications
○ Key driver: low and predictable latency for small messages

● Cloud Computing applications  
○ VM migration, distributed file systems 
○ Key driver: CPU efficient high throughput transfers

●  ML Training
○ Key driver: Predictable latency for high bandwidth transfers. Also CPU efficiency.



RDMA overview

● Basic idea: CPU sets up the transfer and then “gets out of the way”.

● Two high-level aspects to how this is achieved
a. A new application abstraction: RDMA “queue pairs”
b. Offloading common tasks (congestion control, reliability, ordering, etc.) to the RDMA 

NIC and/or network fabric.



RDMA Queue Pairs are the interface between the application and RDMA NIC
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● Send and Receive Work Queues are created in 
pairs. Used by the CPU to schedule transfers

○ Not to hold data! 

● Different types of Queue Pairs:
○ Ordered vs. unordered.
○ Reliable vs. unreliable
○ Etc. 

● “Reliable Connected” Queue Pairs

○ Closest to traditional TCP connections.

○ Connection establishment is out of band, 
exchanges Queue Pair Ids, etc.
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RDMA Queue Pairs are the interface between the application and RDMA NIC



RDMA: Send and Receive Work Queues

● Send Work Queue is responsible for managing 
outgoing RDMA transfers initiated by the local 
host.

● Receive Work Queue responsible for managing 
incoming RDMA operations from a remote host. 
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RDMA: Work Queue Entry (WQE)
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send/receive by writing Work Queue Entries (WQEs, 
pronounced “wookie”) to the Send/Receive Work 
Queue

● A WQE primarily contains a pointer to a buffer. 
● WQE on send queue contains a pointer to the 

transfer to be sent.
● WQE on the receive queue contains a pointer to a 

buffer where an incoming transfer from the wire can 
be placed



RDMA: Completion Queues

● Completion Queue (CQ) Stores completion 
notifications for both Send and Receive Queue  
transfers. 

● The application reads the Completion Queue to 
understand the status of its RDMA transfers.
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RDMA Operations

● Basic form of RDMA Operation: Send
○ Sends data to remote node

● Other RDMA Operations:
○ RDMA Write
○ RDMA Read
○ RDMA Atomic
○ RDMA WRITE with Immediate

● Let’s step through the operation of an RDMA Send operation … 



[Step 0] Application registers memory region accessible by NIC for RDMA transfers
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Buffer 
to transfer
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[Step 0] RDMA transfers “messages” from/to this registered memory region 



[Step 1] Create Queue Pairs, Completion Queues
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[Step 2] Application creates Work Queue Entries on Send and Receive Queues
Se

nd
 

Q
ue

ue

Re
ce

iv
e 

 
Q

ue
ue

Completion Queue

Se
nd

 
Q

ue
ue

Re
ce

iv
e 

 
Q

ue
ue

Completion Queue

RDMA NIC RDMA NIC

CPU
cores

Host
memory

Application (sender side)

CPU
cores

Host
memory

Application (receiver side)Send WQEReceive WQE



[Step 2] Application creates Work Queue Entries on Send and Receive Queues
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   Recall: WQEs contain pointers to the relevant buffers!



[Step 3] Memory to Memory Data Transfer (without CPU involvement!)
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[Step 4] NICs Generate Completion Queue Entries (and remove relevant WQEs)
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[Step 5] Application Processes Completion Queue Entries
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● What about loss, congestion, ordering, etc.? Still need to address these issues!

● Addressed by the lower layers of RDMA, implemented in the NIC and switches

● Two broad approaches
1. Infiniband: uses switch support for reliability, CC, etc. Big departure from TCP/IP/Ethernet
2. RDMA over converged Ethernet (RoCE): Allows running RDMA over modified Ethernet, IP

● Jury still out on which approach is best!

Implementing the RDMA abstraction



Taking stock: RDMA

● Departure from the traditional sockets, TCP/IP, Ethernet stack
○ New application abstraction 
○ New division of functionality between hosts and switches 
○ New division of functionality within hosts (app vs. OS vs. NIC)

● Adoption driven by modern app needs and enabled by the unique characteristics 
of datacenter environments

○ Applications need high performance and efficiency 
○ In datacenters we can co-design apps, hosts and switches to adopt a new architecture 



Lecture Outline

What is Host Networking 
and Why it Matters

The Role of Network 
Interface Cards (NICs)

Remote Direct Memory 
Access

● What is RDMA; Pros and Cons.
● Applications of RDMA.
● RDMA Building Blocks.
● A walk through of RDMA Send Operation.

● What is the role of a NIC?
● What are offloads and why are they important?
● Offloads on a spectrum:

○ Simple offloads like checksum, segmentation.
○ More complex offloads that maintain per-flow or per-tenant state
○ Most complex: offload the entire protocol, e.g. TCP, RDMA.

● Learnt before: network stack in the OS implements reliability, congestion control, flow control, etc.
● Problem in datacenters: extreme perf. requirements; valuable CPU cores; kernel development is hard.
● Host networking in datacenters is heavily optimized for application performance and CPU efficiency.
● Optimization opportunities: OS bypass, and offloads to the NIC



Closing Thoughts

● Original Internet protocols and implementations not designed for performance

● Datacenter environments have changed / are changing / the game 

● Lessons 
○ Understand your constraints  
○ Contemplate technology trends 
○ Master “what if” reasoning 


