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Today: Congestion Control

l One of the core topics in networking

l Today: concepts, design space, TCP’s approach

l Next lecture: TCP walk-through and advanced topics



l If two packets arrive at a router at the same time, the 
router will transmit one and buffer the other

l If many packets arrive close in time 
l the router cannot keep up à gets congested
l causes packet delays and drops

Recall: Lecture 3



Some History: TCP in the 1980s

l Sending rate only limited by flow control 
l Dropped packets à senders retransmit, repeatedly! 

l Led to “congestion collapse” in Oct. 1986

l Fixed by Karels and Jacobson’s development of 
TCP’s congestion control (CC) algorithms

-- Karels (UCB) and Jacobson(LBL)



Van Jacobson

l Researcher at the Lawrence Berkeley National Lab.
l Many contributions to the early TCP/IP stack
l Creator of many widely used network tools

l traceroute, tcpdump, Berkeley Packet Filter, ... 
l Later Chief Scientist at Cisco, now at Google 
l Recently: BBR, new CC protocol used by youtube, etc.



Their Approach
l Incremental extension to TCP’s existing protocol

l Source adjusts its window size based on observed packet loss

l A pragmatic and effective solution 
l Required no upgrades to routers or applications!
l Patch of a few lines of code to BSD’s TCP implementation
l Quickly adopted and has been the de-facto approach since

l Extensively researched and improved upon



CC more generally...

l Huge literature on the problem 
l In systems, control theory, game theory, stats, econ

l Recent resurgence of interest in industry 
l New emphasis on high-performance (cloud services)
l New context (datacenters, LLMs)
l New methods (ML)
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Topics for today

l What makes CC a hard problem?
l Goals for a good solution 
l Design space 
l Components of a solution
l TCP’s approach (high level)
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Congestion Control

l Fundamentally, a resource allocation problem
l Flow is assigned a shared of the link BW along a path

l But more complex than traditional resource alloc. 
l Changing one link’s allocation can have global impact
l And we’re changing allocations on every flow arrival/exit
l No single entity has a complete view or complete control!

l Allocations in our context are highly interdependent 



Topics for today

l What makes CC a hard problem?
l Goals for a good solution 
l Design space 
l Components of a solution
l TCP’s approach (high level)
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Goals

l From a resource allocation perspective
l Low packet delay and loss 
l High link utilization 
l “Fair” sharing across flows

Aim: a good tradeoff between the above goals



Goals

l From a resource allocation perspective
l Low packet delay and loss 
l High link utilization 
l “Fair” sharing across flows

l From a systems perspective
l Practical: scalable, decentralized, adaptive, etc.



Topics for today

l What makes CC a hard problem?
l Goals for a good solution 
l Design space 
l Components of a solution
l TCP’s approach (high level)
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Possible Approaches

(0) Send at will
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Possible Approaches

(1) Reservations
l Pre-arrange bandwidth allocations
l Comes with all the problems we’ve discussed



Possible Approaches

(1) Reservations
(2) Pricing / priorities

l Don’t drop packets for the highest bidders/priority users
l Charge users based on current congestion levels
l Requires payment model



Possible Approaches

(1) Reservations
(2) Pricing / priorities 
(3) Dynamic Adjustment

l Hosts dynamically learn current level of congestion
l Adjust their sending rate accordingly



Possible Approaches

(1) Reservations
(2) Pricing / priorities 
(3) Dynamic Adjustment

In practice, the generality of dynamic adjustment 
has proven powerful
l Doesn’t presume business model
l Doesn’t assume we know app/user requirements
l But does assume good citizenship!



(1) First, host A discovers it can send at ~10Gbps 
(2) A notices that ~10Gbps is congesting the network 

(3) A figures out it should cut its rate to ~1Gbps
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(4) A notices that 1Gbps is congesting the network

(5) A figures out it should cut its rate to (say) ½ Gbps



Two broad classes of solutions

l Host-based CC 
l No special support from routers
l  Hosts adjust rate based on implicit feedback from routers

l Router-assisted CC 
l Routers signal congestion back to hosts 
l Hosts pick rate based on explicit feedback from routers

à Jacobson’s original TCP approach



Taking stock: 
where we are in the design space

Dynamic adjustment

CC
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Host-based Router-assisted
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where we are in the design space

Dynamic adjustment
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Topics for today

l What makes CC a hard problem?
l Goals for a good solution 
l Design space 
l Components of a solution
l TCP’s approach (high level)
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Sketch of a (host-based) solution

Each source independently runs the following:

l Pick initial rate R 
l Try sending at a rate R for some period of time 

l Did I experience congestion in this time period? 
§ If yes, reduce R 
§ If no, increase R 

l Repeat

How do we pick the initial rate?

How do we detect congestion

By how much should 
we increase/decrease



Components of a Solution

l Detecting congestion 

l Discovering an initial rate 

l Reacting to congestion (or lack thereof) 
l Increase/decrease rules



Detecting Congestion?

l Packet loss
l Approach commonly used by TCP 

l Benefits
l Fail-safe signal
l Already something TCP detects to implement reliability

l Cons 
l Complication: non-congestive loss (e.g., checksum err.)
l Complication: reordering (e.g., with cumulative ACKs)
l Detection occurs after packets have experienced delay



Detecting Congestion?

l Increase in packet delay
l Long considered tricky to get right: packet delay varies 

with queue size and competing traffic
l Google’s BBR protocol is challenging this assumption



Note: Not All Losses the Same

l Duplicate ACKs: isolated loss
l Packets and ACKs still getting through
l Suggests mild congestion levels

l Timeout: much more serious
l Not enough packets/dupACKs getting through
l Must have suffered several losses

l We’ll see that TCP reacts differently in each case



Taking stock: 
where we are in the design space
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Discovering an initial rate?

l Goal: estimate available bandwidth 
l Start slow (for safety) 
l But ramp up quickly (for efficiency) 

l Toy example of an inefficient solution
l Add ½ Mbps every 100ms until we detect loss
l If available BW is 1Mbps, will discover rate in 200ms
l If available BW is 1Gbps, will take 200 seconds 
l Either is possible! 



Solution: “Slow Start”

l Start with a small rate (hence the name)
l Might be much less than actual bandwidth
l Linear increase takes too long to ramp up

l Increase exponentially until first loss 
l E.g., double rate until first loss

l A ”safe” rate is half of that when first loss occurred
l I.e., if first loss occurred at rate R, then R/2 is safe rate



Components of a Solution

l Discovering an initial rate 

l Detecting congestion 

l Reacting to congestion (or lack thereof) 
l Increase/decrease rules



Sketch of a solution

Each source independently runs the following:

l Pick initial rate R 
l Try sending at a rate R for some time period 

l Did I experience congestion in this time period? 
§ If yes, reduce R 
§ If no, increase R 

l Repeat
By how much should 

we increase/decrease?



Rate adjustment

l This is a critical part of a CC design!

l Determines how quickly a host adapts to 
changes in available bandwidth

l Determines how effectively BW is consumed 

l Determines how BW is shared (fairness)
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Goals for rate adjustment 

l Efficiency: High utilization of link bandwidth

l Fairness: Each flow gets equal share



How should we adjust rate?

l At the highest level: fast or slow 

l Fast: multiplicative increase/decrease  
l E.g., increase/decrease by 2x (R à 2R or R/2)

l Slow: additive increase/decrease
l E.g.,  increase/decrease by +1 (Rà R+1 or R-1)

44



Leads to four alternatives

l AIAD: gentle increase, gentle decrease

l AIMD: gentle increase, rapid decrease

l MIAD: rapid increase, gentle decrease

l MIMD: rapid increase, rapid decrease
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Leads to four alternatives

l AIAD: gentle increase, gentle decrease

l AIMD: gentle increase, rapid decrease

l MIAD: rapid increase, gentle decrease

l MIMD: rapid increase, rapid decrease
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Why AIMD? Intuition

l Consequences of sending too much are worse 
than sending too little
l Too much: packets dropped and retransmitted
l Too little: somewhat lower throughput

l General approach:
l Gentle increase when uncongested (exploration)
l Rapid decrease when congested
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Why AIMD? In more detail... 

l Consider a simple model
l Two flows going over single link of capacity C
l Sending at rates X1 and X2 respectively

l When X1+X2 > C, network is congested
l When X1+X2 < C, network is underloaded

l Would like both: 
l X1 + X2 = C à link is fully utilized with no congestion
l X1 = X2 à sharing is “fair”
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Simple Model, C=1
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Example Allocations, C=1
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Example Adjustments
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Our Four Options

l AIAD: gentle increase, gentle decrease

l AIMD: gentle increase, rapid decrease

l MIAD: rapid increase, gentle decrease

l MIMD: rapid increase, rapid decrease

l And now apply our simple model!
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AIAD Dynamics

l Consider: Increase: +1 Decrease: -2

l Start at X1 = 1, X2 = 3, with C = 5

l First iteration: no congestion
l X1 → 2, X2 → 4

l Second iteration: congestion
l X1 → 0, X2 → 2

l Third iteration: no congestion
l X1 → 1, X2 → 3   

l …

Back where we started! 
à Gap between X1 and X2 

didn’t change at all  



AIAD
l Increase: x + a
l Decrease: x - b

l Does not 
converge to 
fairness
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MIMD Dynamics
l Consider: Increase:	×2 Decrease: ÷ 4

l Start at X1 = ½, X2 = 1, with C = 5

l First iteration: no congestion
l X1 → 1, X2 → 2

l Second iteration: no congestion
l X1 → 2, X2 → 4

l Third iteration: congestion
l X1 → ½ , X2 → 1  

l …
56Again, no improvement in fairness



MIMD
l Increase: x ×	bI
l Decrease: x ×	bD

l Does not 
converge to 
fairness
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MIAD Dynamics

l Consider: Increase:	×2 Decrease: −1
l Start at X1 = 1, X2 = 3, with C = 5

l First iteration: no congestion; X1 → 2, X2 → 6
l Second iteration: congestion; X1 → 1, X2 → 5
l Third iteration: congestion; X1 → 0, X2 → 4
l Fourth iteration: no congestion; X1 → 0, X2 → 8

      X1 pegged at 0; MIAD is maximally unfair!
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AIMD Dynamics
l Consider: Increase:	+1 Decrease: ÷ 2
l Start at X1 = 1, X2 = 2, with C = 5

l First iteration: no congestion: X1 → 2, X2 → 3
l Second: no congestion: X1 → 3, X2 → 4
l Third: congestion: X1 → 1.5, X2 → 2
l Fourth: no congestion: X1 → 2.5, X2 → 3
l Fifth: congestion: X1 à 1.25, X2 à 1.5
l Sixth: no congestion: X1 à 2.25, X2 à 2.5
l Seventh: no congestion: X1 à 3.25, X2 à 3.5
l Eighth: congestion: X1 à  1.625, X2 à 1.75
l Ninth: no congestion: X1 à2.625, X2à 2.75

Diff = 1

Diff = 1
Diff = 1

Diff = 0.5
Diff = 0.5

Diff = 0.25
Diff = 0.25
Diff = 0.25

Diff = 0.125
Diff = 0.125



AIMD

l Difference between X1 and X2 decreasing!
l Difference stays constant when increasing
l Halves every time there is a decrease
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AIMD
l Increase: x+aI
l Decrease: x*bD
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Answer to Why AIMD?

l AIMD embodies gentle increase, rapid decrease

l AIMD only choice that drives us towards “fairness”

l Out of the four options
l AIAD, MIMD: retain unfairness
l MIAD: maximally unfair
l AIMD: fair and appropriate gentle/rapid actions
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Any Questions?
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Topics for today

l What makes CC a hard problem?
l Goals for a good solution 
l Design space 
l Components of a solution
l TCP’s approach (high level)
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Sketch of a solution

Each source independently runs the following:

l Pick initial rate R 
l Try sending at a rate R for some time period 

l Did I experience congestion in this time period? 
§ If yes, reduce R 
§ If no, increase R 

l Repeat



Sketch of TCP’s solution

Each source independently runs the following:

l Pick initial rate R
l Try sending at a rate R for some time period 

l Did I experience congestion in this time period? 
§ If yes, reduce R
§ If no, increase R 

l Repeat



Sketch of TCP’s solution

Each source independently runs the following:

l Slow-start to find initial rate
l Try sending at a rate R for some time period 

l Did I experience congestion in this time period? 
§ If yes, reduce R
§ If no, increase R 

l Repeat



Sketch of TCP’s solution

Each source independently runs the following:

l Slow-start to find initial rate 
l Try sending at a rate R for some time period 

l Did I experience congestion loss in this time period? 
§ If yes, reduce R
§ If no, increase R 

l Repeat



Sketch of TCP’s solution

Each source independently runs the following:

l Slow-start to find initial rate 
l Try sending at a rate R for some time period 

l Did I experience congestion loss in this time period? 
§ If yes, reduce R multiplicatively (2x)
§ If no, increase R additively (+1)

l Repeat



Review: TCP’s window-based operation

l Sender maintains a window of packets in flight. The window size is 
picked to balance three goals
l Take advantage of network capacity (“fill the pipe”)
l Avoid overloading the receiver (flow control)
l Avoid overloading links (congestion control)

l Flow control: sender maintains an advertised window; denoted 
RWND (for receiver window)

l CC: sender maintains a congestion window (CWND)

l Sender-side window = min{CWND, RWND}
l Assume for this lecture that RWND > CWND



Review: 

Sender maintains a sliding window of W contiguous bytes

i i + W

sent & ACKed Not yet 
transmitted

Sender maintains a single timer, for the LHS of window
On timeout, sender retransmits the packet starting at i



Review: 

Receiver sends cumulative ACKs; sender counts #dupACKs

i i + W

Fast Retransmit: Sender retransmits when #dupACKs = 3
Sender slides window on receiving an ACK for new data (j > i)

j j + W



Sketch of TCP’s solution

Each source independently runs the following:

l Slow-start to find initial rate 
l Try sending at a rate R for some time period 

l Did I experience congestion loss in this time period? 
§ If yes, reduce R multiplicatively (2x)
§ If no, increase R additively (+1)

l Repeat



Extending TCP with CC 

l Add a congestion window parameter (CWND)

l The sender’s rate is CWND/RTT
l (assuming RWND > CWND)

l Hence, adapting CWND à adapting sender’s rate



How a TCP sender adapts its rate

l Detecting congestion 
l Loss-based

l Discovering an initial rate 
l Slow start 

l Adapting rate to congestion (or lack thereof) 
l AIMD



Updating CWND 
(to implement slow-start and AIMD)

l CWND updates are event driven 

l Three types of events relevant to CC
l New ACK
l k(=3) duplicate ACKs 
l Timeout 



Adapting CWND based on events

l New ACK à increase CWND (based on slow-start or AIMD)
l Indicates no congestion was encountered

l 3 dupACKs à decrease CWND (based on AIMD)
l Indicates isolated loss

l Timeout à rediscover a good CWND (return to slow-start) 
l Indicates loss of several packets. Bad news!

l Let’s take a closer look at how this is implemented... 



Note

l Recall: TCP operates on bytestreams

l Hence, real implementations maintain CWND in bytes

l This lecture will talk about CWND in units of MSS 
l MSS: Maximum Segment Size, the max number of bytes of data 

that one TCP packet can carry in its payload
l This is only for pedagogical purposes



How TCP Implements Slow Start

l Sender starts at a slow rate; increases rate  
exponentially until first loss

l In TCP: start with a small CWND = 1 (MSS)
l So, initial sending rate is MSS/RTT

l Then double CWND every RTT until first loss

l Implemented as: On each ACK: CWND += 1 (MSS)



Slow Start in Action
Goal: Double CWND every round-trip time

Simple implementation: On each ACK, CWND += 1 (MSS)

D1 A1 D2 D3 A2 A3 D4 D5

Src

Dest

D6 D7

CWND=1

A4 A5 A6 A7

CWND=2 CWND=3 CWND=4 ...  CWND=8



How TCP Implements Slow Start 
(contd.)

l Double CWND every RTT until first loss

l Introduce a “slow start threshold” parameter
l SSTHRESH, used to remember last “safe” rate

l On first loss: SSTHRESH = CWND/2



Recall: how we adapt rate 

l Detecting congestion 
l Loss-based

l Discovering an initial rate 
l Slow start 

l Adapting rate to congestion (or lack thereof) 
l AIMD



AIMD in TCP

l Additive increase: 
l No loss à increase CWND by 1 MSS every RTT



Implementing Additive Increase

l Implementation works by adding a fraction of an 
MSS every time we receive an ACK

l On receiving an ACK (for new data)
l 𝐶𝑊𝑁𝐷	 → 𝐶𝑊𝑁𝐷 + !

"#$%

l 𝐶𝑊𝑁𝐷	 → 𝐶𝑊𝑁𝐷 +𝑀𝑆𝑆	× &''
"#$% if counting CWND in bytes

l NOTE: after full window, CWND increases by 1 MSS
l Thus, CWND increases by 1 MSS per RTT



AIMD in TCP

l Additive increase: 
l No loss à increase CWND by 1 MSS every RTT

l Multiplicative decrease
l Loss detected by 3 dupACKs à divide CWND in half



Implementing Multiplicative Decrease

l On receiving 3rd dupACK:
l 𝐶𝑊𝑁𝐷	 → !"#$

%



On Timeout

l Rationale: lost multiple packets in a window
l Current CWND may be way off
l Hence, need to rediscover a good rate from scratch
l Design decision that errs on the side of caution

l Hence, on timeout:
l Set SSTHRESH ¬ "#$%

(
l Set CWND ¬ 1 MSS & enter Slow Start mode
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Summary of Increase

l When in Slow-Start phase 
l Increase CWND by 1 MSS for each new ack

l When in AIMD phase 
l Increase by 1 (MSS) for each window’s worth of acked data
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Summary of Decrease

l Cut CWND in half on loss detected by dupACKs

l Cut CWND all the way to 1 (MSS) on timeout

l Never drop CWND below 1 (MSS)
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Slow-Start vs. AIMD

l When does a sender stop Slow-Start and start 
Additive Increase?

l Determined by SSTHRESH

l When CWND > SSTHRESH, sender switches 
from slow-start to AIMD’s additive increase



Recap: TCP congestion control 

l Discovering an initial rate 
l Slow start 

l Detecting congestion 
l Loss-based

l Adapting rate to congestion (or lack thereof) 
l AIMD

TCP implements the above by updating
 CWND on ACK arrivals and timeouts 



Leads to the TCP “Sawtooth”

Loss

Exponential
“slow start”

t

Rate
Multiplicative

decrease

Additive
increase



Next Time

l TCP: reliability and CC together 
l Analyzing TCP
l Router-assisted CC



BACKUP



Note: TCP is “ACK Clocked”

l A new ACK advances the sliding window and lets a 
new data segment enter the network
l I.e., ACKs “clock” data segments

l What’s the benefit of ACK clocking?



ACK Clocking

Src DstR1 R2
10Gbps 1Gbps 10Gbps



ACK Clocking

Src Dst

Consider: source sends a burst of packets
Packets are queued and “spread out” at slow link

ACKs maintain the spread on the return path



ACK Clocking

Src Dst

Sender clocks new packets with the spread

Now sending without queuing at the bottleneck link!


