
CS 168
Transport and TCP

Fall 2024
Sylvia Ratnasamy

CS168.io

1



Taking Stock

l Last time: started on the transport layer (L4)

l Developed the techniques for reliable data delivery

l Today
l A more comprehensive look at the transport layer 
l The design of TCP 

2



Transport Layer

3



Transport in our layered architecture

Transport

Network

Datalink

Physical

Application app

OS 
(networking stack)

app app

NIC
(Network Interface Card)



Role of Transport Layer

l Bridging the gap between
l The abstractions application designers want
l The abstractions networks can easily support

l Having a common implementation simplifies app 
development

5



What functions does the 
transport layer implement?

l Demultiplexing between processes/apps (lecture#3)

l Reliability (last lecture)

l Translate from packets to app-level abstractions (today)

l Flow control: avoid overloading the receiver (today)

l Congestion control: avoid overloading the network (next week)



Let’s first talk about these issues in general 

...and then how TCP implements them

10



NIC
(Network Interface Card)

OS
IP

TCP UDP SCTP

L1, L2

L3

L4

L7

Demultiplexing?



Recall: logical ports

app

OS 
(networking stack)

app app

NIC

Place where app connects to the OS network stack

Identify 
attachment 

point 
between 
app. & OS



Hence, demultiplexing

l Achieved by defining a field (“port”) that identifies 
the application

l Field is carried in a packet’s L4 protocol header

13



Reliable Delivery

l Last lecture

14



Application-layer abstractions

l Ideally, app doesn’t see the gory details of the network
l packets, ACKs, duplicates, reordering, corruption, ...

l Want a higher-level abstraction that meets app needs

15



Application Abstractions

l Reliable in-order bytestream delivery (TCP)
l Logical “pipe” between sender and receiver
l Bytes inserted into pipe by sender-side app
l They emerge, in order, at the receiving app

l Individual message delivery (UDP)
l Unreliable (application responsible for resending)
l Messages limited to single packet



What functions does the 
transport layer implement?

l Demultiplexing between processes/apps (lecture#3)

l Reliability (last lecture)

l Translate from packets to app-level abstractions (today)

l Flow control: avoid overloading the receiver (today)

l Congestion control: avoid overloading the network (next week)



How big should the window be?

l Last lecture: Pick window size W to balance three goals
l Take advantage of network capacity (“fill the pipe”)
l But don’t overload the receiver (flow control)
l And don’t overload links (congestion control)

l Last lecture: For the first goal: W x packet-size ~ RTT x B
l RTT is round-trip time and B is the bottleneck BW
l This is an upper bound on the desired size of W

l Now consider the other two goals... 

18



Don’t overload the receiver

l Consider the transport layer at the receiver side

l May receive packets out-of-order but can only 
deliver them to the application in order

l Hence, the receiver must buffer incoming packets 
that are out of order
l Must continue to do so until all “missing” packets arrive!

l Must ensure the receiver doesn’t run out of buffers



Hence: Flow Control

The basic idea is very simple... 

l Receiver tells sender how much space it has left
l TCP calls this the “advertised” window

l Advertisement is carried in ACKs

l Sender adjusts its window accordingly
l Packets in flight cannot exceed the receiver’s advertised window 



Don’t overload the network

l Previously: sender sets W to fully consume the 
bottleneck link bandwidth
l I.e., sender is sending data at the rate of B

l In practice, bottleneck is shared with other flows
l Hence, sender should only consume its share of B
l But what is this share?

src dst10Gbps B=1Gbps 5Gbps

400Mbps
250Mbps



Congestion Control

l The transport layer at the sender implements a congestion 
control algorithm that dynamically computes the sender’s 
share of the bottleneck link BW

l TCP calls this the sender’s congestion window (cwnd)

l Computed to balance multiple goals 
l Maximize my performance 
l Without overloading any link (avoid dropped packets)
l While sharing bandwidth ”fairly” with other senders

l Topic for (multiple) future lectures



So, how big should the window be?

l Pick window size W to balance three goals
l Take advantage of network capacity (“fill the pipe”)
l But don’t overload the receiver (flow control)
l And don’t overload links (congestion control)

l First goal: W ~ RTT x B
l Second: W ~ receiver’s advertised window
l Third: W ~ sender’s congestion window (cwnd)

l Window size is set to the minimum of the above



In practice

l A sender’s cwnd should be <= RTT x B 

l And it’s difficult for the sender to discover B

l Hence, window size is the minimum of: 
l The congestion window computed at the sender 
l The receiver’s advertised window



Recap: what the transport layer tackles

l Demultiplexing
l logical ports

l Reliability
l acks, timeouts, windows, etc.

l Translation between abstractions 
l between packets and bytestreams (coming up)

l Avoid overloading the receiver
l receiver’s “advertised window”

l Avoid overloading the network
l sender computes a “congestion window”



What if your app doesn’t want 
all these features?

l E.g., an application that doesn’t need reliability
l E.g., an app that exchanges very short messages

l UDP: User Datagram Protocol
l A no-frills, minimalist protocol 
l Only implements mux/demux



TCP

Vint 
Cerf

Bob Kahn



The TCP Abstraction

l TCP delivers a reliable, in-order, bytestream



TCP “Stream of Bytes” Service…

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Application @ Host A

Application @ Host B
B

yte 80

B
yte 80



… Implemented Using TCP “Segments”

Byte 0
Byte 1
Byte 2
Byte 3

Byte 0
Byte 1
Byte 2
Byte 3

Byte 80

TCP Data

TCP Data

Byte 80

Segment sent when:
1. Segment full (Max Segment Size),
2. Not full, but times out

Application @ Host A

Application @ Host B



TCP Segment

l TCP/IP packet
l IP packet with a TCP header and data inside

l IP packet
l No bigger than Maximum Transmission Unit (MTU)

l TCP segment
l No more than Maximum Segment Size (MSS) bytes
l MSS = MTU – (IP header) – (TCP header)

IP Hdr
IP Data

TCP HdrTCP Data (segment)



Byte 0
Byte 1
Byte 2
Byte 3

Byte 0
Byte 1
Byte 2
Byte 3

Byte 80

TCP Data

TCP Data

Byte 80

Application @ Host A

Application @ Host B

… Implemented Using TCP “Segments”



… Described by TCP headers

Byte 0
Byte 1
Byte 2
Byte 3

Byte 0
Byte 1
Byte 2
Byte 3

Byte 80

Byte 80

Application @ Host A

Application @ Host B

TCP Data TCP 
HDR

TCP Data TCP 
HDR

Header carries a ”sequence number” 
that indicates where in the 

bytestream this segment fits 



Major Notation Change

l Previously we focused on packets:
l Packets had numbers
l ACKs referred to those numbers
l Window sizes expressed in terms of # of packets

l TCP focuses on bytes. Thus, 
l Packets identified by the bytes they carry
l ACKs refer to the bytes received
l Window size expressed in terms of # of bytes

l You should be prepared to reason in terms of either

35



TCP Sequence Numbers

Byte 2
Byte 3

ISN
+1

ISN
+2

ISN
+3

... ...

Byte 80

Numbering starts with 
an ISN (Initial Sequence Number)

1st byte 
is ISN+1

ISN
+1

ISN
+2

ISN
+3

Host A

Host B



TCP Sequence Numbers

ISN
+1

ISN
+2

ISN
+3

...

Byte 2
Byte 3

...

Byte 80

TCP Data TCP 
HDR

TCP Data TCP 
HDR

Sequence number 
= 1st byte in segment

(e.g., ISN+k)

ISN
+1

ISN
+2

ISN
+3

Host A

Host B

Numbering starts with 
an ISN (Initial Sequence Number)

1st byte 
is ISN+1



TCP Sequence Numbers

ISN
+1

ISN
+2

ISN
+3

...

Byte 2
Byte 3

...

Byte 80

TCP Data TCP 
HDR

TCP Data TCP 
HDR

ACK sequence number 
= next expected byte

(e.g., ISN+k + length(data))

ISN
+1

ISN
+2

ISN
+3

Host A

Host B

Numbering starts with 
an ISN (Initial Sequence Number)

1st byte 
is ISN+1



The TCP Abstraction

l TCP delivers a reliable, in-order, bytestream

l Reliability requires keeping state
l Sender: packets sent but not ACKed, related timers
l Receiver: out-of-order packets

l Each bytestream is called a connection or session
l Each with their own connection state
l State is in hosts, not network!



Note#1: TCP is “connection oriented”

l TCP includes a connection setup and tear-down step
l Used to initialize connection state at both endpoints 
l Details coming up ... 

40



#2: TCP connections are full-duplex

41

l So far, we’ve talked about a connection as having a sender 
side and a receiver side

l But connections in TCP are full-duplex
l Each side of the connection can be sender and receiver
l I.e., A can send data to B, while B sends data to A
l Simultaneously, over the same connection
l Packets carry both data and ACK info

l We can usually ignore this point (for this class)
l Except when it comes to connection establishment
l Will return to this later ... 



The TCP Abstraction

l TCP delivers a reliable, in-order, bytestream

l TCP is connection-oriented
l Per-connection state is maintained at sender & receiver



Functionality
l Mux/demux among processes

l Reliability

l Flow control (to not overflow receiver)

l Congestion control (to not overload network)

l “Connection” set-up & tear-down

43



Ports

l 16-bit port address space for TCP and UDP

l Some ports are “well known” (0-1023)
l e.g., ssh:22, http:80
l Services can listen on well-known port
l Client (app) knows appropriate port on server

l Other ports are “ephemeral” (most 1024-65535):
l Given to clients (at random)



4 5 8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload



4 5 8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL)

6 = TCP
17 = UDP 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload



4 5 8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL)

6 = TCP
17 = UDP 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload

TCP header



48

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used to demux 



Functionality
l Mux/demux among processes

l Reliability

l Flow control (to not overflow receiver)

l Congestion control (to not overload network)

l “Connection” set-up & tear-down

49



How does TCP handle reliability?

Many of our previous ideas, with some key differences
l Sequence numbers are byte offsets
l Uses cumulative ACKs; with “next expected byte” semantics
l Uses sliding window: up to W contiguous bytes in flight

Next expected byte, as ACKed by receiver

ISN
+1

ISN
+2

ISN
+3

... ...@sender

window = max data “in flight”



How does TCP handle reliability?

Many of our previous ideas, with some key differences
l Sequence numbers are byte offsets
l Uses cumulative ACKs; with “next expected byte” semantics
l Uses sliding window: up to W contiguous bytes in flight
l Retransmissions triggered by timeouts and duplicate ACKs
l Single timer, for left hand side (1st byte) of the window 
l Window size is a function of cwnd and advertised window

l With special accounting for duplicate ACKs (future lecture)
l Timeouts are computed from RTT measurements

l Covered in section



ACKing and Sequence Numbers
l Sender sends packet 

l Data starts with sequence number X
l Packet contains B bytes

l X, X+1, X+2, ….X+B-1

l Upon receipt of packet, receiver sends an ACK
l If all data prior to X already received:

l ACK acknowledges X+B (because that is next expected byte)
l If highest contiguous byte received is a smaller value Y

l ACK acknowledges Y+1 (because TCP uses cumulative ACKs)



Pattern (w/ only one packet in flight)
l Sender: seq number =X, length=B
l Receiver: ACK=X+B
l Sender: seq number =X+B, length=B
l Receiver: ACK=X+2B
l Sender: seq number =X+2B, length=B

l Seq number of next packet is same as last ACK

53



TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Starting byte 
offset of data
carried in this
segment



TCP Header

55

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Acknowledgment 
gives sequence 
number just beyond 
the highest sequence 
number received in 
order (i.e., next 
expected byte)



56

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data



Functionality
l Mux/demux among processes

l Retransmission of lost and corrupted packets

l Flow control (to not overflow receiver)

l Congestion control (to not overload network)

l “Connection” set-up & tear-down

57



TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data



Implementing Sliding Window
l Sender maintains a window

l Data that has been sent but not yet ACK’ed
l Window size = maximum amount of data in flight

l Left edge of window:
l Beginning of unacknowledged data

l Right edge of window (ignoring congestion control)
l Depends on the window advertised by receiver
l Which depends on receiver’s buffer space

Next expected byte, as ACKed by receiver

ISN
+1

ISN
+2

ISN
+3

... ...@sender

window = max data “in flight”



TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

“Must Be Zero”
6 bits reserved

Number of 4-byte 
words in TCP 
header;
5 = no options



TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used with URG 
flag to indicate 
urgent data (not 
discussed further)



TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Options 
(we’ll ignore)



TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data



Functionality
l Mux/demux among processes

l Retransmission of lost and corrupted packets

l Flow control (to not overflow receiver)

l Congestion control (future lecture)

l “Connection” set-up & tear-down

65



Functionality
l Mux/demux among processes

l Retransmission of lost and corrupted packets

l Flow control (to not overflow receiver)

l Congestion control (future lecture)

l “Connection” set-up & tear-down

66



TCP Connection Establishment 
and Initial Sequence Numbers



Establishing a TCP Connection

l Three-way handshake to establish connection
l Host A sends a SYN to host B
l Host B returns a SYN acknowledgment (SYN ACK)
l Host A sends an ACK to acknowledge the SYN ACK

68

SYN

SYN ACK

ACK

A B

Data
Data

Each host tells 
its ISN to the 
other host.



TCP Header

69

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
ACK
FIN
RST
PSH
URG



Step 1: A’s Initial SYN Packet

70

A’s port B’s port

A’s Initial Sequence Number

(Irrelevant since ACK not set)

Advertised window5=20B Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it wants to open a connection…



Step 2: B’s SYN-ACK Packet

71

B’s port A’s port

B’s Initial Sequence Number

ACK = A’s ISN plus 1

Advertised window20B 0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

B tells A it accepts, and is ready to hear the next byte…

… upon receiving this packet, A can start sending data

Flags



Step 3: A’s ACK of the SYN-ACK

72

A’s port B’s port

B’s ISN plus 1

Advertised window20B Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it’s likewise okay to start sending

A’s Initial Sequence Number

… upon receiving this packet, B can start sending data



Timing Diagram: 3-Way Handshaking

73

Client (initiator) Server

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1



Tearing Down the Connection

74



TCP Header

75

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
ACK
FIN
RST
PSH
URG

See /usr/include/netinet/tcp.h on Unix Systems



Normal Termination, One Side At A Time

l Finish (FIN) to close connections
l Other host ack’s
l Closes A’s side of the connection, but not B’s

l Until B likewise sends a FIN
l Which A then acks

76

SY
N

SY
N

 A
CK

A
CK

D
at

a

FI
N

A
CK

A
CK

time
A

B

FIN

A
CK

Wait a while

Connection
now half-closed

Connection
now closed



Abrupt Termination

l A sends a RESET (RST) to B
l E.g., because A restarted

l That’s it
l B does not ack the RST
l Thus, RST is not delivered reliably
l And: any data in flight is lost
l If B sends anything more, will elicit another RST 77

SY
N

SY
N

 A
CK

A
CK

D
at

a

RS
TA

CK

time
A

B

D
ata RS

T



TCP State Transitions

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two
segment lifetimesFIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open /SYN

Data, ACK 
exchanges 
are in here



An Simpler View of the Client Side

CLOSED

TIME_WAIT

FIN_WAIT2

FIN_WAIT1

ESTABLISHED

SYN_SENT

send SYN

receive SYN+ACK,
send ACK

send FIN
receive ACK,
send nothing

receive FIN, 
send ACK



In Summary

l TCP
l An elegant (though not perfect) piece of engineering

that has stood the test of time 
l Thought experiment: will TCP continue to be a good solution?

l Plenty of evolution in individual pieces
l Congestion control 
l Better acknowledgements, ISN selection, timer estimation, etc.

l But core architectural decisions/abstractions remain 
l Bytestreams, connection oriented, windows etc.

l Next time: start on congestion control! 

80



Any Questions?

81


