
IPv6 / IP Routers
Autumn 2024

cs168.io

Rob Shakir

Thanks to Murphy McCauley for some of the material!

http://cs168.io

Last Time

● A different class of routing protocols – Link State.

● Solving routing scalability – IP addressing.

IPv4

● 32 bits of address.

● Some number of fixed bits – network address.
● Remaining bits variable – multiple host addresses.

● Hierarchical.
○ Allows us to introduce “wildcard” matches – to summarise routes.

■ e.g., 192.168.0.0/16 → 192.
○ “All addresses” - 0.0.0.0/0 – the default route.

● Class-ful addressing to class-less addressing.
○ Making better use of the address space.

IPv6

IPv4

2^32 = 4,294,967,296
addresses available.

Was 32 bits enough?

https://ipv4.potaroo.net/

Was 32 bits enough?

https://ipv4.potaroo.net/

��
��

NANOG 51 - February 2011

IP version 6

What happened to version 5?

IPv6

● Fundamentally uses the same addressing structure as IP version 4.

● But with 128-bits of address space.
○ And some new requirements and rules…
○ Not relevant to our discussion.

● Went from 2^32 to 2^128 addresses.

IPv6

2^128 = 3.402823669209385e+38
addresses available.

IPv6

Number of seconds since the Universe began –
1e+21.

IPv6

● Switches to hexadecimal representation rather than longer dotted address.

● 2001:0DB8:CAFE:BEEF:DEAD:1234:5678:9012
● 2001:0DB8:0000:0000:0000:0000:0000:0001

● Can omit leading zeros: 2001:DB8:0:0:0:0:0:1
● Can omit repeated zeros once per address: 2001:DB8::1

IPv6

● Still uses slash notation.

● 128-bits fixed == /128.
● 32-bits fixed == /32.

IPv6

● Some changes!

● We leave the last 64-bits of the address variable to allow for hosts to
configure their own addresses.

○ StateLess Address AutoConfiguration (SLAAC).

● This means practically, we don’t expect to see routes with /64 or longer
(greater).

○ Although in special cases we might.

IPv6

● The same hierarchical addressing approach is used in IPv6 and IPv4.

● We tend to use IPv4 for examples.
○ Because long strings of numbers are harder to remember.

IPv6 Adoption

https://www.google.com/intl/en/ipv6/statistics.html

IPv6 Adoption

https://www.google.com/intl/en/ipv6/statistics.html

IPv6 Adoption

https://www.google.com/intl/en/ipv6/statistics.html

Adoption generally correlated with areas where there are many
Internet users.

Challenges for IPv6 Adoption

● No smooth path
○ Hosts and ISPs need both addresses.

● Rebuilding the Internet.
○ Partial coverage where only some things are on IPv6.

● Coexistence.
○ If something is on IPv4 and IPv6 which should I use?

● Main driver for IPv6 adoption
○ We’re running out of IPv4 addresses!

Questions?

IP Routers

Recall: IP router purpose.

MIT

UW

UCB

NYU

Destination Next Hop Link

MIT Link#4
UW Link#5
UCB Link#2
NYU Link#3

111010010 UCB

#4
#2

#3#5

Recall

● A router performs IPv4/IPv6 lookup against the destination IP of a packet.
● Routers run routing protocols to learn about routes.
● “Routes” are sets of destination IP addresses.

● Today: What is a router?

What makes up the Internet?

Colocation facilities: Datacenters housing multiple Internet Service Providers.
Many routers from different companies!

IP routers?

Computers specialised for forwarding packets.
Different sizes and configurations depending on requirements.

Different Sizes of IP Router.

Dimensions:
● Physical size
● Number of ports
● Bandwidth

Router Definitions

● N = number of external ports.
● R = speed (“line rate”) of a port
● Router Capacity = N x R

● N = 4, R = 100Mbps
● N = 1, R = 1Gbps
● Total: 0.4+1 = 1.4Gbps.

Today’s capacity.

Today (400G linerate)

● 8 linecards, 36 ports each.
● N = 8 x 36 = 288
● R = 400Gbps
● Router Capacity = 288 * 400G =

115.2Tbps

Next Gen (800G linerate)

● 8 linecards, 36 ports each.
● N = 8 x 36 = 288
● R = 800Gbps
● Router Capacity = 288 * 800G = 230Tbps

Evolution of Capacity…

2010 2011 2012 2015 2016 2017 2014 2018 2019 2013

Juniper MX3D
1.76T

Brocade MLXe

2.56T
Juniper PTX5000

3.84T
Cisco ASR9000

16T
Juniper MX2020

8T

Arista 7500R

28T

Juniper/Cisco/
Arista lean core

50T+

Juniper/Cisco/
Arista lean core

200T+

Juniper/Cisco/
Arista lean core

100T+

10G 100G 400G

Note:
● Physical size (constrained by racks!)
● Impact of link speed (10G → 100G → 400G)

Questions?

What’s inside a router?

Local CPU
(x86)

Control
Processor

(x86)

Local CPU
(x86)

LinecardLinecard

Controller Card
Chassis

Input and
output ports

(Optical,
Copper)

Input and output
are on the same

linecard.

Processes
packets

before they
leave

Connects input and output ports

Runs control- and management-plane
software and programs linecards.

Controls local
linecard

functions

Forwarding Packets - the Data Plane.

Local CPU
(x86)

Control
Processor

(x86)

Local CPU
(x86)

LinecardLinecard

Controller Card
Chassis

Forwarding
Chip(s)

Fabric
Chip(s)

Fabric

Fabric
Chip(s)

Fabric

Fabric

Forwarding
Chip(s)

Specialised hardware optimised
to forward packets.

High-bandwidth, fault-tolerant
interconnection between

linecards

1-20 linecards inside a single
“chassis”.

Other
Routers

Control Plane Functions.

Local CPU
(x86)

Control
Processor

(x86)

Local CPU
(x86)

LinecardLinecard

Controller Card
Chassis

Forwarding
Chip(s)

Fabric
Chip(s)

Fabric

Fabric
Chip(s)

Fabric

Fabric

Forwarding
Chip(s)

BGP / IGP (IS-IS, OSPF)

Communicate with other routers
to determine what routes are

available.

Program linecards to say where
to send traffic (push

forwarding tables).

Management Plane Functions.

Local CPU
(x86)

Control
Processor

(x86)

Local CPU
(x86)

LinecardLinecard

Controller Card
Chassis

Forwarding
Chip(s)

Fabric
Chip(s)

Fabric

Fabric
Chip(s)

Fabric

Fabric

Forwarding
Chip(s)

Configuration
System

Monitoring System

Send monitoring information to external
systems.

(e.g., linecard has failed, amount of
traffic per interface…)

Receive external configuration to tell
router what to do.

(e.g., what IP addresses to use, what
BGP neighbours to talk to)

Looking at a real router.

Linecard

Controller
Card

Fan Tray

“06” - 6 slots, 2
controllers + 4 linecards

A small cluster of computers Computers specialised for forwarding packets.

Definitions

Control Plane

● Runs routing protocols to allow router to understand where to route
packets.

Management Plane

● Interacts with systems and humans to configure and monitor the device.

Data Plane

● Forwards packets.

We need all these to run a router in a real network!

Questions?

Types of Packets - “User” Traffic.

Local CPU
(x86)

Control
Processor

(x86)

Local CPU
(x86)

LinecardLinecard

Controller Card
Chassis

Forwarding
Chip(s)

Fabric
Chip(s)

Fabric

Fabric
Chip(s)

Fabric

Fabric

Forwarding
Chip(s)

“User” packet -
forwarded

according to
installed routes.

Types of Packets - Control Plane Traffic.

Local CPU
(x86)

Control
Processor

(x86)

Local CPU
(x86)

LinecardLinecard

Controller Card
Chassis

Forwarding
Chip(s)

Fabric
Chip(s)

Fabric

Fabric
Chip(s)

Fabric

Fabric

Forwarding
Chip(s)

Packets destined
to this router -

e.g., BGP or IGP
packets.

Types of Packets - “Punt” Traffic.

Local CPU
(x86)

Control
Processor

(x86)

Local CPU
(x86)

LinecardLinecard

Controller Card
Chassis

Forwarding
Chip(s)

Fabric
Chip(s)

Fabric

Fabric
Chip(s)

Fabric

Fabric

Forwarding
Chip(s)

Packet requiring
special handling.

(e.g., TTL expiry)

Why this architecture?

● Smallest Ethernet packet = 64 bytes.
● Current interface speed = 400 gigabits per second.
● 4x1011 / 64*8 = 781.25x106 packets per second per direction.
● 1.5625x109 packets per second x 36 ports = 56.25x109 pps.

○ In practice a little lower… but a lot!

● Not achievable on a general purpose CPU.
○ ~millions of packets per second are.
○ “Slow path” used only when necessary.

● Forwarding hardware is the “fast path”.
○ Much more efficient (power, cost).

Any questions?

Local CPU
(x86)

Control
Processor

(x86)

Local CPU
(x86)

LinecardLinecard

Controller Card
Chassis

Forwarding
Chip(s)

Fabric
Chip(s)

Fabric

Fabric
Chip(s)

Fabric

Fabric

Forwarding
Chip(s)

What does the input linecard do?

● Tasks
○ Receive incoming packets from other systems

■ Handle the physical layer (electrical, or optical) - PHY
■ On-the-wire encoding (Ethernet) - MAC

○ Update the IP header
■ TTL, checksum, options, fragment

○ Perform lookup for forwarding.

Challenges for Input Linecards - Speed!

● We talked about packet rate - even with 250 byte packets - 1 packet per 5
nanoseconds.

● Need to run at 0.2GHz for each port even with (the ideal of) one cycle per
packet - but, we need to do multiple operations on each packet, and have
many ports per chip.

○ Could we parallelise? Lots of CPU == lots of power.
○ Typically have specialised network processors - with some programmability, but with

limited functions.
○ Special processing that can’t be done there done at control processor (per linecard or

central).

“Pipeline” For Packet Forwarding: Layer 1 + 2

PHY MAC

Handle electrical or optical signals.

Handle link-layer (Layer 2)

Implemented in hardware.

“Pipeline” For Packet Forwarding: Fabric

PHY MAC Forwarding Fabric
Interconnect

Dedicated hardware interconnect
chips with limited features.

Send traffic to other linecards across intra-chassis links.

To other
linecards

Forwarding Chips

PHY MAC
Fabric

Interconnect

To other
linecards

Split packet to understand
headers (IPv4, IPv6…)

Parse Lookup Actions

Adjust packet as required to
send onwards (TTL, checksum)

Actions in Hardware

● Easy to achieve:
○ Checksum
○ Decrement TTL

● More difficult:
○ Options

■ Small number of cycles per packet on dedicated forwarding chips!
■ Generally don’t use/allow options!

○ Fragmentation
■ Achievable in hardware with some overhead.
■ Typically avoided (Internet MTU is 1500-bytes).

Focusing on lookups!

PHY MAC
Fabric

Interconnect

To other
linecardsParse Lookup Actions

Core router functionality! This is our challenge!

Where should we send a packet?

● Output lookups!

● Ideal? One lookup → forwarding entry.
○ Exact-match on destination IP - for O(1) lookups.
○ Forwarding table size?
○ Updating these tables - lots of entries to update!

● IP prefixes tend to be hierarchical.
○ Assigned IP addresses in a block to some ISP, and assigned to “downstream” networks.
○ Practically: /24 (256 address blocks) are the smallest we have on the Internet.
○ /32 (1 address) is the smallest internally though!
○ We can use compact tables that exploit this hierarchy – but lookups are more complex.

Find the prefix that matches

AT&T

LBL UCB
a.b.0.0/16

Verizon a.0.0.0/8

a.c.0.0/16

a.0.0.0/8 this way

a.d.0.0/16
UCSF

AT&T’s Forwarding Table

Destination Next Hop

a.0.0.0/8 at&t

Verizon’s Forwarding Table

Destination Next Hop

a.b.0.0/16 lbl

a.c.0.0/16 ucb

a.d.0.0/16 ucsf

Where do we send a packet to a.b.x.y?

Find the longest prefix that matches

AT&T

LBL UCB
a.b.0.0/16

Verizon a.0.0.0/8

a.c.0.0/16

a.0.0.0/8 this way

a.d.0.0/16
UCSF

AT&T’s Forwarding Table

Destination Next Hop

a.0.0.0/8 at&t

a.b.0.0/16 LBL

Verizon’s Forwarding Table

Destination Next Hop

a.b.0.0/16 lbl

a.c.0.0/16 ucb

a.d.0.0/16 ucsf

Where do we send a packet to a.b.x.y?

Longest Prefix Match (LPM)

Take the most specific route that matches.

● If address matches multiple prefixes, then take the longest match.

● If the address matches no prefixes, take the default route.

● If there’s no default route, drop the packet!

Questions?

Example #1: 4 prefixes, 4 ports

Prefix Port
201.143.0.0/22 P1
201.143.4.0.0/24 P2
201.143.5.0.0/24 P3
201.143.6.0/23 P4

201.143.0.0/22

201.143.4.0/24 201.143.5.0/24

201.143.6.0/23

P1

P2 P3

P4

Finding a Matching Route

● Incoming packet destination: 201.143.7.210

Prefix Port
201.143.0.0/22 P1
201.143.4.0.0/24 P2
201.143.5.0.0/24 P3
201.143.6.0/23 P4

● Incoming packet destination: 201.143.7.210

Finding a Matching Route: Convert to Binary

11001001 10001111 00000111 11010010

11001001 10001111 000000−− −−−−−−−

11001001 10001111 00000100 −−−−−−−

11001001 10001111 00000101 −−−−−−−

11001001 10001111 0000011− −−−−−−−

201.143.0.0/22

201.143.4.0/24

201.143.5.0/24

201.143.6.0/23

Routing table

● Incoming packet destination: 201.143.7.210

Finding a Matching Route: Convert to Binary

11001001 10001111 00000111 11010010

11001001 10001111 000000−− −−−−−−−

11001001 10001111 00000100 −−−−−−−

11001001 10001111 00000101 −−−−−−−

11001001 10001111 0000011− −−−−−−−

201.143.0.0/22

201.143.4.0/24

201.143.5.0/24

201.143.6.0/23

Routing table

● Incoming packet destination: 201.143.7.210

Finding a Matching Route: Convert to Binary

11001001 10001111 00000111 11010010

11001001 10001111 000000−− −−−−−−−

11001001 10001111 00000100 −−−−−−−

11001001 10001111 00000101 −−−−−−−

11001001 10001111 0000011− −−−−−−−

201.143.0.0/22

201.143.4.0/24

201.143.5.0/24

201.143.6.0/23

Routing table

● Incoming packet destination: 201.143.7.210

Longest Prefix Match

11001001 10001111 00000111 11010010

11001001 10001111 000000−− −−−−−−−

11001001 10001111 00000100 −−−−−−−

11001001 10001111 00000101 −−−−−−−

11001001 10001111 0000011− −−−−−−−

201.143.0.0/22

201.143.4.0/24

201.143.5.0/24

201.143.6.0/23

Routing table

Check an address against all prefixes and select the longest prefix it
matches with

NOT Check an address against all prefixes and find the one it matches
most bits with

Finding a Match Efficiently

● Looking up against each entry scales poorly.
○ On average O(number of entries)
○ IPv4 Internet is ~1M routes (prefixes).
○ IPv6 Internet is ~214K prefixes.

● We can leverage the tree structure of binary strings.

Prefix Port

1100100110001111000000********** 1
110010011000111100000100******** 2
110010011000111100000101******** 3
11001001100011110000011********* 4

Considering the 3-bit prefixes…

● (We’ll focus on where the differences are)

● 0** → Port 1
● 100 → Port 2
● 101 → Port 3
● 11* → Port 4

Prefix Tree

00*

000 001

0 1
01*

010 011

0 1
11*

110 111

0 1
10*

100 101

0 1

0**
0 1

1**
0 1

0 1

 0** → Port 1
 100 → Port 2
 101 → Port 3
 11* → Port 4

Prefix Tree

11*10*

100 101

0 1

0** 1**
0 1

0 1

 0** → Port 1
 100 → Port 2
 101 → Port 3
 11* → Port 4

Port 1

Port 2 Port 3

Port 4

Prefix Match in the Tree

11*10*

100 101

0 1

0** 1**
0 1

0 1

Port 1

Port 2 Port 3

Port 4

11001001 10001111 00000111 11010010

What about multi-homing?

AT&T

LBL UCB
a.b.0.0/16

Verizon a.0.0.0/8

a.c.0.0/16

a.0.0.0/8 this way

a.d.0.0/16
UCSF

AT&T’s Forwarding Table

Destination Next Hop

a.0.0.0/8 at&t

a.b.0.0/16 LBL

Verizon’s Forwarding Table

Destination Next Hop

a.b.0.0/16 lbl

a.c.0.0/16 ucb

a.d.0.0/16 ucsf

Some prefixes overlap

● Slightly different example - like Verizon.

● 0** → Port 1
● 100 → Port 2
● 101 → Port 3
● 11* → Port 4
● 001 → Port 5

Tree with overlapping entries.

00*

001

1
11*10*

100 101

0 1

0**
0

1**
0 1

0 1

 0** → Port 1
 100 → Port 2
 101 → Port 3
 11* → Port 4
 001 → Port 5

Port 1

Port 2 Port 3

Port 4

Port 5

Example 1

00*

001

1
11*10*

100 101

0 1

0**
0

1**
0 1

0 1

Port 1

Port 2 Port 3

Port 4

Port 5

11001001 10001111 00000001 11010010

Example 2

00*

001

1
11*10*

100 101

0 1

0**
0

1**
0 1

0 1

Port 1

Port 2 Port 3

Port 4

Port 5

11001001 10001111 00000000 11010010

Longest Prefix Match

00*

001

1
11*10*

100 101

0 1

0**
0

1**
0 1

0 1

Port 1

Port 2 Port 3

Port 4

Port 5

11001001 10001111 00000000 11010010

Walk down the tree bit-by-bit…
Record the port associated with the last matched prefix.

If you ever leave the tree - last prefix match is the port to use.

Questions?

Several prefixes to the same port.

● More realistic Internet scenario.

● 0** → Port 1
● 100 → Port 2
● 101 → Port 1
● 11* → Port 1

Prefix Tree

00*

000 001

0 1
01*

010 011

0 1
11*

110 111

0 1
10*

100 101

0 1

0**
0 1

1**
0 1

0 1

 0** → Port 1
 100 → Port 2
 101 → Port 1
 11* → Port 1

Port 1

Port 2 Port 1

Port
1

Normal Prefix Tree

11*10*

100 101

0 1

0** 1**
0 1

0 1

Port 1

Port 2 Port 1

Port
1

A more compact representation.

10*

100

0

1**
0

1Port 1

Port 2

LPM in real routers

● All routers have this LPM functionality.
○ But use more advanced/complex solutions.

● Heuristics and optimisations can be made based on what is seen
in the real internet.
○ Some destinations more popular than others.
○ Some ports have more destinations
○ Typical prefix sizes (recall: smallest IPv4 Internet prefix is /24).
○ Speed of update required.

Output Linecards: A wider picture

PHY MAC
Fabric

Interconnect

To other
linecardsParse Lookup Actions Queueing

Packet Queueing

● Classification: what queue should this packet be put in to.
○ One queue per input port, one queue per marking on the packet (DSCP?)

● Buffer management.
○ Should we drop packets?

● Scheduling.
○ When should we transmit packets?

Traffic and queue management?

Our picture assumes the simplest possible!

● No classification
● Drop-tail buffer management: if the buffer is full, just drop the packet.
● FIFO scheduler - just send the packets in the order they arrive.

Many alternate (complex) scenarios - used to implement business objectives.

Recap: IP Routers

● Have different “planes”:
○ Control plane - programming forwarding entries and exception packets.
○ Management plane - configure and monitor router functionality.
○ Data plane - packet forwarding!

● Data plane leverages tradeoffs in software vs hardware packet processing.
○ Software: flexible but slow
○ Hardware: inflexible but fast

● Data plane challenges: speed!
○ Update packet header (easy)
○ LPM lookup on destination address (harder).

