Routing #3 / Addressing

Autumn 2024
cs168.io

Rob Shakir

Thanks to Murphy McCauley for some of the material!

http://cs168.io
http://cs168.io

Last Time

e We've talked a lot about distance-vector routing protocols.

Plan for today

e Types of routing protocols.
e Another type of protocol: Link State.
e Addressing - IPv4 + IPvé.

Link-State Protocols

Link-State Routing

e As mentioned, another major class of routing protocols.
e \Very common as an Interior Gateway Protocol.

e Major examples:

o IS-IS (Intermediate System to Intermediate System)
o OSPF (Open Shortest Path First)

e \Very different operation to Distance-Vector!

Distance-Vector vs. Link-State

e Distance-Vector

o Global computation (distributed across all nodes)
o Only local data (local node plus whatever our neighbours told us).

Distance-Vector vs. Link-State

e Distance-Vector

o Global computation (distributed across all nodes)
o Only local data (local node plus whatever our neighbours told us).

e Link-State

o Local computation
o Using global data (from all parts of the network)

Link-State

e A router locally computes routing state
e ...using “global data” (?!)

e Whatis “global data"?
o The state of every link in the network.
o Isitup ordown?
o Whatis its cost?

Global Data in Link-State

e Going back to our handy topology.

e Information about state of links:
o R1-R2 exists, and has cost 1
o R1-R3 exists, and has cost 10
o R4-5 exists and has cost 7
o etc

Global Data in Link-State

e Going back to our handy topology.

e Information about state of links:

o R1-R2 exists, and has cost 1
o R1-R3 exists, and has cost 10
o R4-5 exists and has cost 7

o Etc.

e Information about destinations:

o R3 has destination A
o R4 has destination B

Global Data in Link-State

e Going back to our handy topology.

e Information about state of links:
o R1-R2 exists, and has cost 1
o R1-R3 exists, and has cost 10
o R4-5 exists and has cost 7
o Etc.

e Information about destinations:
o R3 has destination A
o R4 has destination B

e This can be used to build a global view
of the topology.

Global Data in Link-State

e With this global view, we can easily
compute paths.

e Ifwe're R5 - what's the best path to A?
o R5,R2,R1, R4, R3 A

e What's useful to R5 for forwarding?
o Only the next-hop — R2.

A R2

Questions?

Link-State: Overview

e Everyrouterin the topology:
o Gets the state of all links and the location of all destinations.

o Uses that information to build a full graph.
o Finds paths from itself to every destination on the graph.

o Uses the next-hop (adjacent router) in those paths to populate the forwarding table.

Link-State: Overview

e Everyrouterin the topology:
o Gets the state of all links and the location of all destinations.
m Need some way to distribute this graph!

o Uses that information to build a full graph.
m Glue together all link/destination information received.

o Finds paths from itself to every destination on the graph.
m Run some algorithm over the graph.

o Uses the next-hop (adjacent router) in those paths to populate the forwarding table.

Link-State: Algorithms

e Since each router has the complete topology - we just need a Single
Source Shortest Path algorithm.

e Some obvious choices:

o Bellman-Ford (serial)
o Dijkstra's algorithm

e Can we do better?
Breadth-first search

o Dynamic shortest path

o Approximate shortest path
o Parallel SSSP

O

Link-State: Overview

e Everyrouterin the topology:
o Gets the state of all links and the location of all destinations.
m Need some way to distribute this graph!

o Uses that information to build a full graph.
m Glue together all link/destination information received.

o Finds paths from itself to every destination on the graph.
m Run some algorithm over the graph.

o Uses the next-hop (adjacent router) in those paths to populate the forwarding table.

Link-State: Populating Tables
e Remember: each router can only influence its own next-hop.

e Other routers must be using an approach which is “compatible”.

Link-State: Populating Tables
e Remember: each router can only influence its own next-hop.
e Other routers must be using an approach which is “compatible”.

e Simple for least-cost routing if:

o Minimising the same cost metric.
o All costs are > 0.

Link-State: Populating Tables
e Remember: each router can only influence its own next-hop.
e Other routers must be using an approach which is “compatible”.

e Simple for least-cost routing if:
o Minimising the same cost metric.
o All costs are > 0.
o All routers agree on topology.

e Given these, can have different algorithms (e.g., break ties the same).
o Since we can guarantee no loops.

L-S: Learning about the topology

e We need to understand information about;

o All links between all routers.
o All destinations.

e We need to:
o Discover who my neighbours are.
o Tell everyone about my neighbours.
o Tell everyone about destinations attached to me.

L-S: Learning about the topology

e We need to understand information aout:

o All links between all routers.
o All destinations.

e We need to:
o Discover who my neighbours are.
o Tell everyone about my neighbours.
o Tell everyone about destinations attached to me.

L-S: Hello Messages

e How do we find who is adjacent to us and their identity?
o Say hello!

L-S: Hello Messages

e How do we find who is adjacent to us and their identity?
o Say hello!

e Routers periodically send hello messages to neighbours.
o If they stop saying hello, assume that they disappeared.

Hi, I'm
Cookie
Monster

)

NG

L-S: Learning about the topology

e We need to understand information about;

o All links between all routers.
o All destinations.

e We need to:
o Discover who my neighbours are by exchanging hellos.
o Tell everyone about my neighbours.
o Tell everyone about destinations attached to me.

L-S: Flooding

e Exchanging hellos just finds your next-door neighbour.
e Butwe need to know about everyone within the network.

e Solution: flood information across the network.

e Straw-person solution:

o When local information changes - send it to everyone.
o When you receive information from your neighbour - send it to everyone else.

Bert and Ernie
are neighbours,
tell everyone!

L-S: Flooding

e Does this always work?

https://docs.google.com/file/d/1esz4sa9r8q9aFRONMfefUQC5-qzrbFdG/preview

Link State: Flooding

e Naive solution causes amplification:

o One-loop - packets get forwarded forever.
o Multiple loops - packets multiply exponentially.

Link State: Flooding

e Naive solution causes amplification:

o One-loop - packets get forwarded forever.
o Multiple loops - packets multiply exponentially.

e Solution:

o When local information changes, send to all neighbours.
o When you receive a packet from a neighbour, send to all other neighbours.
m Unless you've already seen it!

e Identifying packets you have seen can be via a sequence number or any
other unique identifier.

Link State: Flooding Reliability

e We need to make sure that other routers don't “miss” updates.
o Remember, we wanted a consistent view of the network!

e Use the same trick as D-V protocols: periodically re-send the packet.
o IS-IS and OSPF both do these things.

e Generally, this ties in with reliability of message delivery.

Questions?

L-S: Convergence

e When a failure occurs, Dijkstra (or similar) will avoid a looping path.
e However, we can still have loops in link state protocols.

e We only control our own next-hop.
o If our neighbour doesn’'t know about a link failure - i.e., has a different topology
o ...they might forward back to us!

e For example: ©
o R1, which doesn't know about a failure, forwards to R3
o R3sends packet to R1.

R2

R1

L-S: Convergence

e Link-State protocols rely on the graph being consistently understood to
converge.

e Sources of delay:
o Time to detect failure.
o Time to flood link-state information.
o Time to recompute paths.

e During convergence.
o Dead-ends
o Loops
o Out of order delivery

L-S: Overview

e Simple concept:
o Everyone floods link/destination information
o Everyone has a global map of the network
o Everyone independently computes next-hops

e All the complexity is in the details!

Why might we use a link-state protocol?

e Aren’t Link State protocols just worse?

e Distance-Vector hides some details from each node.
o Must accept what our neighbour told us, and we don't know what the path is.

e Distance-Vector relies on our neighbour recomputing and readvertising their
path.

e Link state protocols can:
o Flood information before recomputing (just tell everyone the state).
o Make all the topology available to every node (so they know what path they are choosing)

e Generally, we use a path/distance vector and link state protocol in
combination in real networks.

Questions?

Addressing

Thus far...

m Nxt,Cost TTL

Routing Table A Direct,1

CEECES
0

1
1
2

Forwarding Table

o N W >

Thus far...

st |macost |

Routing Table A Direct, 1

CEECEE
0

1
1
2

Forwarding Table

o N W >

One entry per destination

Really?

e (Can we really scale routing and forwarding tables to every host on the
Internet?

e If routing on the Internet is D-V, how long does it take to reconverge and
how many routing calculations does each router do?

e If routing on the Internet is L-S, can we really store the entire state of the
network including all hosts at each node?

Really?

e (Can we really scale routing and forwarding tables to every host on the
Internet?

e If routing on the Internet is D-V, how long does it take to reconverge and
how many routing calculations does each router do?

e If routing on the Internet is L-S, can we really store the entire state of the
network including all hosts at each node?

e No.

So...

e We've referred to each node just based on some name.
o e.g,R1,R2 A

e Butis that really the case?

e The “secret” to scaling routing = how we do addressing!

Addressing at each Layer

e Remember, we talked about our letter example.

o IfIsend a letter to Sylvia...
m FedEx used Soda Hall’s address.
m The department used 473 Soda’s address.
m Inside 413, we used Sylvia's name.

e Each layer had a separate type of address.
o This is the same on the Internet.

e We already discussed addresses in Ethernet (at Layer 2) - MAC addresses.

IP addresses

e You'll have seen them when thinking about networking at home.

e But sometimes they are hidden.
o We'll talk about that later.

e Two flavours: IPv4 and IPv6.

o The fundamentals for routing are similar.
o We'll use IPv4 mainly in our examples.

e A number assigned to each host on the network.

o 32bits for IPv4.
o 128bits for IPv6.

Addressing in the Early Internet

e The Internetis a network of networks.

University National ISP

Regional
ISP

Cloud Provider

Addressing in the Early Internet

e The Internetis a network of networks.

o Leads naturally to a hierarchy of addresses.
o And hierarchy is one of the ways to address scaling!

University National ISP

Regional
ISP

Cloud Provider

Addressing in the Early Internet

e The Internetis a network of networks.

o Leads naturally to a hierarchy of addresses.
o And hierarchy is one of the ways to address scaling!

e You could imagine giving each
network a number.
o Then each host a number. 3

e This would give us hierarchical
addresses.

O

Addressing in the Early Internet

e The Internetis a network of networks.

o Leads naturally to a hierarchy of addresses.
o And hierarchy is one of the ways to address scaling!

e You could imagine giving each

network a number.
o Then each host a number. 3

e This would give us hierarchical
addresses.

This host could be 3.7

O

Addressing in the Early Internet

e The Internetis a network of networks.

o Leads naturally to a hierarchy of addresses.
o And hierarchy is one of the ways to address scaling!

e You could imagine giving each

network a number.
o Then each host a number. 3

e This would give us hierarchical
addresses.

Or it could be 3.42.7.1

O

Dlnternal router
. Border router

R9’s Table

e Routing between domains can now think only about the network IEEEEEE
part. I

Hierarchical Addressing

2. R8
e Inter-domain routing: 4 nodes! 4* | R6
3 1
e Limits both:
o Table size R9 R6
o Churn
m Changes inside domains == 4
no recalculation in other
domains.
8 O

e Huge scaling improvement.

Hierarchical Addressing Implications

Internal routers need routes for all hosts in same network...
e Scales with number of hosts in single network

R4’s Table

3.1
3.2
3.3
34
3.5
3.6
3.7

R3
R3
R3
R3
R3
R5
R5

Dlnternal router
. Border router

o]
1.* R6
2.* R8

R6

To R6

To R8

Dlnternal router
. Border router

Hierarchical Addressing Implications

e Internal routers need routes for all hosts in same network...
e Scales with number of hosts in single network 1* R
2. R8

e .. androutes for other networks IEEHIEES
3.1 R3

4. R6

3.2 R3
3.3 R3
3.4 R3
3.5 R3
3.6 R5
3.7 R5
1.* ?
2> ?

4. ?

Hierarchical Addressing Implications

Dlnternal router
. Border router

Internal routers need routes for all hosts in same network...
e Scales with number of hosts in single network 1 R6
e .. and routes for other networks Dst | Nt | R6
3.1 R3

So total state scales with number
of hosts in this network plus
number of other networks

Again: big scalability improvement
assuming many more hosts than
networks

3.2
3.3
3.4
3.5

R3
R3
R3
R3
R5
R5

To R6

To R8

Questions?

Wait...what?

1. 57

Wait...what?

1.% > 7?

Hierarchy means that we might need our
routing and forwarding to understand some
form of wildcards.

Wait...what?

1.% > 7?

We'll come back to this when we talk about how
routers do matches for forwarding. For routing -
we carry this “wildcard” information.

Improving scale with wildcards.

e What routing information does
R2 need?

Improving scale with wildcards.

e What routing information does
R2 need?

e Everything is reached through R3.

e So awildcard can be used.

o Kk

o Called the default route.

e Most hosts just have this route!

Hierarchical Addressing

e Note that addresses aren't assigned randomly!
e Hosts that are “close to each other” (in some sense) share part of their address
e We leverage this structure to make routing (and forwarding) scale better

e We use structured addresses like this all the time!
e Soda Hall #413 is much easier to work with than if we just numbered every office in

the world uniquely...

e This also explains why hosts don't generally participate in routing protocols...
e A human decided how to divide up the network in a way that makes sense
e Your computer doesn’t have its own IP address wherever it goes...
e .. itchanges it address depending on where it is
e .. it“movesin”to the network where it's attached (and gets a new address there)

Our letter example

e Inside FedEx for a letter from London (Z2) to Berkeley.

e Hierarchical lookups:
o USA
California
Berkeley
2551 Hearst Ave (Soda Hall)
413
Sylvia Ratnasamy

O O O O O

Implications of Hierarchical Addressing

e Assuming addresses have two parts: Network.Host
e Border routers figure out routes between networks

e Internal routers figure out host routes for hosts in that network
.. and may propagate the network routes from the EGP (it's one way to do it)

e Scales much better than “flat” routing;:
o Border routers don't see churn inside networks
o Internal routers don't see churn in other networks
o Routers only need state for:
m Hosts in their network
m And other networks themselves

IP addresses vs. MAC addresses

e For this (IP) hierarchy, addresses are allocated to hosts based on their position within a
network.

e MAC addresses are assigned based on the hardware manufacturer.
o And remember, we said they are “burnt in” at manufacture time.

e Creating wildcard routes for MAC addresses would be possible - but...
e ...we don't know where a particular Intel Ethernet card is plugged in.

e In the worst case, we can't create wildcard routes at all for MAC addresses = significant
scaling challenge.

e This is a key consideration in why we consider IP/L3 to be global, and L2 to be “local”

Questions?

Addressing in the Early Internet

e Not very many organisations.
e Give them all a unique number!

e Maybe lots of hosts inside their organisation with different hierarchy.
o Our summarisation can be used internally.

Addressing in the Early Internet

e Not very many organisations.
e Give them all a unique number!

e Maybe lots of hosts inside their organisation with different hierarchy.
o Our summarisation can be used internally.

e SO - addresses are 32-bits long (IPv4).
o Historically:
m Organisation ID == 8 bits.
m HostID == 24 bits.

Addressing in the Early Internet

AT&T:ID =12

Apple: ID =17

Ford: ID =19

Dept. of Defense: ID =6, 7, 11, 21, 22, 26, 28, 29, 30, 33, 55, 214, 215.

Addressing in the Early Internet

AT&T:ID =12

Apple: ID =17

Ford: ID =19

Dept. of Defense: ID =6, 7, 11, 21, 22, 26, 28, 29, 30, 33, 55, 214, 215.

e Wait - 218 = 256.
o DoD =13/256ths of the address space?

e Let's come back to this.

Representing IPv4 addresses

e You could just represent an IPv4 address as a single big integer
e But far more common is a dotted quad or dot quad

17 34 158 5

17.34.158.5 (or 17.2268677)

Scaling addressing.
e Assigned the first 8-bits to “network ID".

e Joe's Tyre Shop: 10 computers but wants to connect to the Internet.
o ID=142.
o 224 =16777216 addresses.

e And we already gave DoD 13 * 2A24 = 218103808 addresses.

Scaling addressing.
e Assigned the first 8-bits to “network ID".

e Joe's Tyre Shop: 10 computers but wants to connect to the Internet.
o ID=142.
o 224 =16777216 addresses.

e And we already gave DoD 13 * 2A24 = 218103808 addresses.

e We're going to run out! @

“Classful” Addressing

e Allocate different size blocks based on need.

0 8
126 nets
ClassA 0|network | el { ~16M hosts
0 16
~16K nets
Class B 1.0‘ network ‘ host { ~65K hosts

0 24

Class € [1[io nemorc | hest ({2 e

Classful Addressing: Fixing bits.
e Whatis a “Class B"?

e Fixing 16 bits of the address to be constant, the rest is variable.

Classful Addressing: Fixing bits.
e Whatis a “Class B"?

e Fixing 16 bits of the address to be constant, the rest is variable.

192 11000000 192 11000000
168 10101000 168 10101000
0 00000000 255 11111111

0 00000000 255 11111111

Classful Addressing

e Raninto problems of its own!

e The sizes of the classes weren't that useful
e C(lass A far too big for most organizations!
e C(lass C far too small for many organizations!
e C(lass B is best option for many
e Still too big for many organizations
e Not that many of them!

e Running out of Class B? That's a lot of routes...
e Number of interdomain routes was going up!

Classful Addressing

e Number of interdomain routes by year (approximate)

20,000
15,000
10,000

5,000

1989 1990 1991 1992 1993 1994

CIDR: Classless Inter-Domain Routing

e Our wildcards are arbitrary.
o 1.**7*just means “the first 8 bits are 00000001".

e C(lasses are just dividing based on “convenient” 8-bit boundaries.

o 8=C(Class A
o 16=Class B
o 24=ClassC

e What happens if we made the number of fixed bits arbitrary?

CIDR: Classless Inter-Domain Routing

e Return to Joe's Tyre Shop.
o 10 computers.

e Rather than giving them a Class C (2/(32-24) = 256 addresses).

o Can we give them fewer?

CIDR: Classless Inter-Domain Routing

e Return to Joe's Tyre Shop.
o 10 computers.

e Rather than giving them a Class C (2/(32-24) = 256 addresses).

o Can we give them fewer?

e Yes, fix more bits!

CIDR: Classless Inter-Domain Routing

e Return to Joe's Tyre Shop.
o 10 computers.

e Rather than giving them a Class C (2/(32-24) = 256 addresses).

o Can we give them fewer?

e Yes, fix more bits!

e (Can we give them 10 addresses?

CIDR: Classless Inter-Domain Routing
e (Can we give them 10 addresses?

e Fix 28 bits: 2/M(32-28) = 16 addresses.

e Fix 29 bits: 2/M(32-29) = 8 addresses.

e No...

CIDR: Classless Inter-Domain Routing
e (Can we give them 10 addresses?

e Fix 28 bits: 2/M(32-28) = 16 addresses.

e Fix 29 bits: 2/M(32-29) = 8 addresses.

e No...but at least we didn’t need to give them 256 addresses.

CIDR: Classless Inter-Domain Routing

e A Class B: 2A(32-16) = 65536
e AClass C: 2/M32-24) = 256

e If we can fix only 23 bits for someone that needs 450 addresses we save a
lot of addresses!

Questions?

Hierarchical Assignment

e ICANN (Internet Corporation for Names and Numbers)
o Gives out blocks of addresses to....

e Regional Internet Registries (RIRS)...
o RIPE (EU), ARIN (NA), APNIC (Asia/Pacific), LACNIC (SA), AFRINIC (Africa)
o Give out portions to...

e large organisations or ISPs...
o Called Local Internet Registries (in the RIPE region)
o Who give out portions to...

e Small organisations and individuals.
o E.g., UC Berkeley, Rob’s startup.

CIDR allows more granular assignment

e ICANN (Internet Corporation for Names and Numbers) 1101
o Fixes 4 bits and assigns this to ARIN - 2/(32-4) = 268435456 addresses.
208.0.0.0

CIDR allows more granular assignment

ICANN (Internet Corporation for Names and Numbers)

O

Fixes 4 bits and assigns this to ARIN - 2/(32-4) = 268435456 addresses.

Regional Internet Registries (RIRSs)...

O
O
O

ARIN allocates 8,000,000 addresses to AT&T.
Requires 23 bits (2423 = 8,388,608) of the address to be variable.
Fixes (32-23) = 9 bits

1101
208.0.0.0

110111001
220.128.0.0

CIDR allows more granular assignment

ICANN (Internet Corporation for Names and Numbers)

(¢]

Fixes 4 bits and assigns this to ARIN - 2/(32-4) = 268435456 addresses.

Regional Internet Registries (RIRS)...

O
O
O

AT&T

(¢]
o
(¢]

ARIN allocates 8,000,000 addresses to AT&T.
Requires 23 bits (2423 = 8,388,608) of the address to be variable.
Fixes (32-23) = 9 bits

Allocates 16,000 addresses to UC Berkeley.
Requires 14 bits of the address to be variable (2214 = 16,384)
Fixes (32-14) = 18 bits.

1101
208.0.0.0

110111001
220.128.0.0

110111001110100010
220.232.128.0

CIDR allows more granular assignment

e ICANN (Internet Corporation for Names and Numbers) 1101
o Fixes 4 bits and assigns this to ARIN - 2/(32-4) = 268435456 addresses.

208.0.0.0
e Regional Internet Registries (RIRs)...
o ARIN allocates 8,000,000 addresses to AT&T. 110111001
o Requires 23 bits (2423 = 8,388,608) of the address to be variable.
o Fixes (32-23) = 9 bits 220.128.0.0
o AT&T
o Allocates 16,000 addresses to UC Berkeley.
o Requires 14 bits of the address to be variable (2214 = 16,384) 110111001110100010
o Fixes (32-14) = 18 bits. 220.232.128.0
e UCB..
o Now can determine how it wants to split its addresses.
o Allocates 200 addresses to Soda Hall. 110111001110100010011010
o Requires 8 bits of the address to be variable (218 = 256). 220.232.154.0
o Fixes (32-8) = 24 bits.

CIDR allows more granular assignment

ICANN (Internet Corporation for Names and Numbers)
Fixes 4 bits and assigns this to ARIN - 2/(32-4) = 268435456 addresses.

(¢]

Regional Internet Registries (RIRS)...

O

ARIN allocates 8,000,000 addresses to AT&T.

Requires 23 bits (2423 = 8,388,608) of the address to be variable.

Fixes (32-23) = 9 bits

Allocates 16,000 addresses to UC Berkeley.
Requires 14 bits of the address to be variable (2214 = 16,384)
Fixes (32-14) = 18 bits.

Now can determine how it wants to split its addresses.

Allocates 200 addresses to Soda Hall.
Requires 8 bits of the address to be variable (248 = 256).
Fixes (32-8) = 24 bits.

Prof. Ratnasamy...

O
@]
O

Allocates 1 address to Rob.
Requires 0 bits of the address to be variable (220 = 1)
Fixes (32-0) = 32 bits.

1101
208.0.0.0

110111001
220.128.0.0

110111001110100010
220.232.128.0

110111001110100010011010
220.232.154.0

110111001110100010011010

CIDR allows more granular assignment

ICANN (Internet Corporation for Names and Numbers)

O

Fixes 4 bits and assigns this to ARIN - 2/(32-4) = 268435456 addresses.

Regional Internet Registries (RIRSs)...

O
O
O

ARIN allocates 8,000,000 addresses to AT&T.
Requires 23 bits (2423 = 8,388,608) of the address to be variable.
Fixes (32-23) = 9 bits

1101
208.0.0.0

110111001
220.128.0.0

How do we know that
220.128.0.0 is in the
allocation?

CIDR Notation

e We need to show how many bits are fixed in the network address in order to
know the range.

e Use “slash notation”:

o 192.168.0.0/16 — 16 bits are fixed.
m 192.168.0.0-192.168.255.255
o 192.168.1.0/24 — 24 bits are fixed.
m 192.168.1.0-192.168.1.255
o 192.168.1.0/29 — 29 bits are fixed.
m 192.168.1.0-192.168.1.7
o 192.168.1.1/32 — 32 bits are fixed.
m 192.168.1.1

An alternative: netmask notification
e Alternative to slash notation.
e Seta 1 for every bit that is fixed - and represent it as a “dotted quad”.
e 111111111111127111121121111211211 =255.255.255.255(32)
e 11111717117112171127111121121111211000=255.255.255.248 (29)

e etc.

e Equivalent notations.
o But slash notation is much more convenient.

Questions?

CIDR and Route Scaling

e Also solving for the number of Inter-Domain Routes.

Route Aggregation

Classful addressing...

R42’s Table

4.x.X.X R13

Orange, SA
(France)

130.x.x.x R13

146.x.x.X R13

Route Aggregation
CIDR addressing...

Allows us to aggregate routes

AT&T

Orange, SA
220.128.0.0/9

(France)

uCB
220.232.128.0/18

UCM
220.232.244.0/19

R42’s Table

220.128.0.0/9

220.

220.

R13

R13

R13

Longest Prefix Matching

R42’s Table

Nxt

220.128.0.0/9 R13
220.232.128: R13

AT&T
220.128.0.0/9

Orange, SA
(France)

220.232.244.0/19 R91

uCB
220.232.128.0/18

UCM
220.232.244.0/19

Was 32 bits enough?

RIR IPv4 Address Run-Down Model
4.5 | T T T T T T

AFRINIC

APNIC e

RIR Address Pool(/8s)

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Date

https://ipv4.potaroo.net/

Was 32 bits enough?

RIR Address Pool(/8s)

4.5

RIR IPv4 Address Run-Down Model

T

AFRINIC
APNIC
RIPE NCC

2015

2016 2017

Date

https://ipv4.potaroo.net/

2018

NANOG 51 - February 2011

IP version 6

Network Working Group S. Deering
Request for Comments: 2460 Cisco
Obsoletes: 1883 R. Hinden
Category: Standards Track Nokia

December 1998

Internet Protocol, Version 6 (IPvé6)
Specification

What happened to version 5?

Network Working Group CIP Working Group
Request for Comments: 1190 C. Topolcic, Editor
Obsoletes: IEN-119 October 1990

Experimental Internet Stream Protocol, Version 2 (ST-II)

IPv6

e Fundamentally uses the same addressing structure as IP version 4.

e But with 128-bits of address space.

o And some new requirements and rules...
o Not relevant to our discussion.

e Wentfrom 2A32 to 2A128 addresses.

IPv6

2MN28 =3.402823669209385e+38
addresses available.

IPv6

e Switches to hexadecimal representation rather than longer dotted address.

e 2001:0DB8:CAFE:BEEF:DEAD:1234:5678:9012
e 2001:0DB8:0000:0000:0000:0000:0000:0001

e Can omit leading zeros: 2001:DB8:0:0:0:0:0:1
e Can omit repeated zeros once per address: 2001:DB8::1

IPv6

e Still uses slash notation.

e 128-bhits fixed ==/128.
e 32-bits fixed ==/32.

IPv6

e Some changes!

e We leave the last 64-bits of the address variable to allow for hosts to

configure their own addresses.
o StateLess Address AutoConfiguration (SLAAC).

e This means practically, we don’t expect to see routes with /64 or longer

(greater).
o Although in special cases we might.

IPv6

e The same hierarchical addressing approach is used in IPv6 and IPv4.

e We tend to use IPv4 for examples.
o Because long strings of numbers are harder to remember.

IPv6 Adoption

We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

Native: 41.23% 6to4/Teredo: 0.00% Total IPv6: 41.23% | Jan 15, 2024

45.00%
40.00%
35.00%
30.00%
25.00%
20.00%
15.00%
10.00%

5.00%

0.00%

2010 ' ' 2020

https://www.google.com/intl/en/ipv6/statistics.html

IPv6 Adoption

https://www.google.com/intl/en/ipv6/statistics.html

IPv6 Adoption

https://www.google.com/intl/en/ipv6/statistics.html

Challenges for IPv6 Adoption

e No smooth path
o Hosts and ISPs need both addresses.

e Rebuilding the Internet.
o Partial coverage where only some things are on IPvé.

e (oexistence.
o If something is on IPv4 and IPv6 which should I use?

e Main driver for IPv6 adoption
o We're running out of IPv4 addresses!

Recap

e Hosts on the Internet have addresses - either IPv4 or IPv6 or both.

e These addresses are hierarchical.
o They are assigned in groups to specific organisations.

e Wildcard matching means that this can help our forwarding and routing
scalability.

o We'll talk about this more next time!

