
Forwarding & Ethernet
Fall 2024
cs168.io

Rob Shakir

Thanks to Murphy McCauley for some of the material!

http://cs168.io

Layer 1

Layer 2

Looking at Layers Again

Layer 3

Layer 4

Layer 7

Physical → Optical fibre, copper

Data Link → Ethernet

Network → IP

Transport → TCP

Application → DNS, HTTP, …

Looking at Layers Again

Layer 1

Layer 2

Layer 3

Layer 4

Layer 7

Physical → Optical fibre, copper

Data Link → Ethernet

Network → IP

Transport → TCP

Application → DNS, HTTP, …

Lecture Plan

● We’re going to start at the bottom of our set of layers.
○ And work-up, covering the layers in more detail.

● Today & next lecture:
○ Layer 2 & Ethernet.
○ How do packets get forwarded?

● Next week - forwarding and routing.
○ How do we know where packets need to go?

Drawing Hosts…

F

This host’s address
is “F”

Connecting Nodes Together

A BHost

Connecting Nodes Together

A BHost

Link

Connecting Nodes Together

A B

C

D E

Now what?

How can we connect this new host?

A BC D E

Naïve solution - connect all our hosts together
via a shared medium.

Some history - ALOHANet

● Norman Abramson had a problem at the University of Hawaii in 1968.
○ How do we allow people on other islands access to the U of H computer?

● ALOHANet
○ Additive Links On-line Hawaii Area
○ Wireless communications from terminals (computers) on other islands.
○ Hugely influential.

● ALOHANet was wireless - in radio networks there is a shared medium (the
electromagnetic spectrum).

Shared Media

● In a network with a shared medium, then transmissions from different
nodes may interfere or collide with each other.

● We need a way to allocate the medium to everyone wanting to use it…
○ A multiple access protocol.

D

C

A B

??!

??!

Common Multiple Access Protocol approaches

● Divide the medium by frequency – frequency-division multiplexing.
○ Give each connected node some slice of frequencies.
○ Can be wasteful – only a specific amount of frequency to allocate.
○ Not everyone has something to say all the time (many frequencies idle).

● Divide the medium by time - time-division multiplexing.
○ Divide time into fixed slots and allocate them to each connected node.
○ Same downside – only so much time, many slots are idle.

● Alternative: can connected nodes take turns?

Turn-taking Schemes

● Polling protocols.
○ A coordinator decides when each connected node can speak.
○ e.g., Bluetooth

D

C

A BCoordinator

A, do you have
something to

say?

Turn-taking Schemes

● Polling protocols.
○ A coordinator decides when each connected node can speak.
○ e.g., Bluetooth

D

C

A BCoordinator

Yes, blah blah
blah blah

Turn-taking Schemes

● Polling protocols.
○ A coordinator decides when each connected node can speak.
○ e.g., Bluetooth

D

C

A BCoordinator

B, do you have
something to

say?

Turn-taking Schemes

● Polling protocols.
○ A coordinator decides when each connected node can speak.
○ e.g., Bluetooth

D

C

A BCoordinator

No

Turn-taking Schemes

● Token-passing
○ Virtual “token” passed around, only the holder can transmit.
○ IBM Token Ring and FDDI.

D

C

A B
Blah blah blah

Token

Turn-taking Schemes

● Token-passing
○ Virtual “token” passed around, only the holder can transmit.
○ IBM Token Ring and FDDI.

D

C

A B

Blah blah blah

Token

Alternative – Random Access

● Both of these mechanisms are partitioning approaches.
○ Essentially, we are dividing by time – but dynamically.
○ Require some form of inter-node communication.

● An alternate idea – just allow for nodes to talk when they have something to
say.

○ And deal with collisions when they occur.

● Used by ALOHANet and then later in Ethernet.

ALOHANet’s Random Access

● Hub node on Oahu.
● Remote nodes across Hawaii.

● Used two frequencies:
○ Hub transmits on its own frequency.

■ Only one sender – no collisions.
■ All remote nodes listen to this frequency.

○ All remote sites transmit on one frequency.
■ May collide.
■ Only the hub listens to the remote frequency.

Hub

R1

R2

R3

ALOHANet: Pure ALOHA random access scheme

● If remote has a packet – just send it.
○ No a priori coordination among remote sites.

● When the hub gets a packet – send ACK.

● If two remote sites transmitted at once, collisions results in a corrupted
packet.

○ Hub doesn’t ACK!

● If a remote sender doesn’t get the expected ACK – then:
○ Wait a random amount of time.
○ Then resend, probably avoiding collisions this time.

Questions?

Ethernet

● Invented in 1973 at the Palo Alto
Research Center (PARC).

● Originally aimed to allow
computers to share printers and
files.

● Has continued to be iterated on
for the last 50 years.

○ Speeds in 1980 were 10Mbps.
○ Speeds in 2024 are 800Gbps.

https://www.ieee802.org/3/ethernet_diag.html

https://www.ieee802.org/3/ethernet_diag.html

Ethernet and CSMA

● Ethernet – used as the most common wired Data Link protocol.

● Refined the ALOHA multiple access protocol to allow access to a shared
Ethernet bus resulting in Carrier Sense Multiple Access (CSMA).

● Where ALOHA is rude, CSMA is polite.
○ Rather than just starting talking, and dealing with collisions…
○ CSMA listens first, and then starts to talk when it is quiet.
○ “Listen” means sensing the signal (carrier) on the shared medium.

Ethernet: CSMA and propagation delay

● CSMA does not necessarily avoid collisions – because of propagation delay.

● t=0:
○ H2 transmits.
○ Signal propagates through the shared

media.

● t=2:
○ H3 has heard, won’t transmit.
○ H4 has not heard – it’s safe to transmit!

■ Signal propagates as time goes by
■ …and collides with H2’s signal.

● Solution: CSMA/CD.

H1 H2 H3 H4

tim
e

space

Ethernet: CSMA and propagation delay

● CSMA does not necessarily avoid collisions – because of propagation delay.

● t=0:
○ H2 transmits.
○ Signal propagates through the shared

media.

● t=2:
○ H3 has heard, won’t transmit.
○ H4 has not heard – it’s safe to transmit!

■ Signal propagates as time goes by
■ …and collides with H2’s signal.

● Solution: CSMA/CD.

H1 H2 H3 H4

tim
e

space

Ethernet: CSMA/CD

● Carrier Sense Multiple Access with Collision Detection (CSMA/CD).

● Modification to the previous approach:
○ Listen whilst you talk.

○ If you start hearing something whilst you are still transmitting – stop!
■ Hence - detect the collision.

● Some additional complexities – but this is the core idea.

● What do we do after detecting a collision?

Ethernet: CSMA/CD

● After collision – wait a random amount of time and retransmit.

● If the link has many senders who want to talk (has high contention) we may
keep colliding.

● Use randomised binary exponential backoff…
○ If retransmit after collision also collides, wait up to twice as long.
○ Continue doubling for every subsequent collision.
○ Retransmits fast when possible, slowing down where necessary.

Questions?

Forwarding & Ethernet Continued
Fall 2024
cs168.io

Rob Shakir

Thanks to Murphy McCauley for some of the material!

http://cs168.io

Recap

● Started to think about Layer 2 networking.

Recap

● Started to think about Layer 2 networking.

A BC D E

Host

Shared
medium

Transmission onto a Shared Medium

● We discussed that hosts need to have a means to determine how to share
the medium.

○ We can use strict partitioning approaches – by time or frequency.
○ Or more dynamic ways to share time.

● Dynamic mechanisms can either:
○ Have inter-host messaging (e.g., a coordinator, or a token) to avoid collisions.
○ Or use a means to deal with collisions when they do occur.

● Ethernet uses Carrier Sense Multiple Access with Collision Detection.
○ Which allows a host to both detect when another host is transmitting
○ And detect when collisions occur – and back off.

Clarifying L1 and L2

● Questions after last lecture – how does this relate to packets?

● Let’s look at what Layer 1 and Layer 2 are.

Clarifying L1 and L2

● Questions after last lecture – how does this relate to packets?

● Let’s look at what Layer 1 and Layer 2 are.

Time

Vo
lt

ag
e

0

1 ● L1: How to send data onto a particular
medium (fibre, copper, radio).

● How to take some data and turn it into a
signal that can be interpreted at the other
end of the connection.

Clarifying L1 and L2

● Questions after last lecture – how does this relate to packets?

● Let’s look at what Layer 1 and Layer 2 are.

Time

Vo
lt

ag
e

0

1

01011001101

We can think of the “output” of Layer 1 as a string
of bits.

Clarifying L1 and L2

● Layer 2 then takes this string of bits and makes it into a packet.

A B

Simple host-to-host.

If A transmits to B ⇒ string of bits is
a valid packet (using the same

parsing rules).

A B C

Shared medium.

Collisions can occur – string of bits
might not be a valid packet.

Layer 2 defines the rules for how to

deal with this (e.g., CSMA/CD).

Clarifying L1 and L2

● Layer 2 protocols such as Ethernet define how we deal with sending and
receiving a string of bits, independently of what the underlying Layer 1
protocol looks like.

● The input to Layer 2 is a set of bits, that we then parse into an Ethernet
frame.

Questions?

Sending messages between computers on an Ethernet.

A BC D E

Hello!

Sending messages between computers on an Ethernet.

A BC D E

Hello!

Who is this message to?
(Everyone sees it!)

Sending messages between computers on an Ethernet.

A BC D E

To: B
Hello!

Sending messages between computers on an Ethernet.

A BC D E

To: B
Hello!

Our packet headers have
a destination address.

Recall from earlier, Packets

● Packet has…
○ Payload (the actual data)
○ Headers (metadata)

■ Must* contain...

Metadata (headers) Data/Payload

Src Addr Dst Addr Type Version ... <html><head><title>My Website</title><head> ...

Recall from earlier, Packets

● Packet has…
○ Payload (the actual data)
○ Headers (metadata)

■ Must* contain a destination address.

Metadata (headers) Data/Payload

Src Addr Dst Addr Type Version ... <html><head><title>My Website</title><head> ...

Recall from earlier, Packets

● Packet has…
○ Payload (the actual data)
○ Headers (metadata)

■ Must* contain a destination address.
● …which implies that a host has an address!

○ Or more than one! (Why?)

Metadata (headers) Data/Payload

Src Addr Dst Addr Type Version ... <html><head><title>My Website</title><head> ...

Recall from earlier, Packets

● Packet has…
○ Payload (the actual data)
○ Headers (metadata)

■ Must* contain a destination address.
● …which implies that a host has an address!

○ Or more than one! (Why?)
○ For now, one address per host.

Metadata (headers) Data/Payload

Src Addr Dst Addr Type Version ... <html><head><title>My Website</title><head> ...

Ethernet Addressing

● If I send a signal (shout in this room) – everyone gets the message.

● But we do want some way to be able to identify the destination of a
particular message.

○ e.g., just talk to one person in the room – not talk to everyone!

● We therefore need some form of addressing to be able to identify different
hosts connected to the same medium.

○ Like we would use a name within this room to talk to one another.

Ethernet: Addresses

● Ethernet has Media Access Control (MAC) addresses.
○ These are Layer 2 addresses – we don’t need to know anything about what is inside the

Ethernet Frame (i.e., it doesn’t matter whether it’s IPv4, IPv6, or even IP at all!)
○ We’ll talk about what can come inside this frame — at the moment it is a bunch of bytes.

● MAC addresses are 48-bits.
○ Usually shown as six two-digit hex numbers with colons.
○ Sometimes referred to as ether or link addresses.

▶ ifconfig en0
en0:
flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST>
mtu 1500

options=400<CHANNEL_IO>
ether f8:ff:c2:2b:36:16

rjs@jumphost:~$ ip link show ens4
2: ens4: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1460
qdisc mq state UP mode DEFAULT group default qlen 1000
 link/ether 42:01:0a:8a:00:03 brd ff:ff:ff:ff:ff:ff
 altname enp0s4

Ethernet: MAC Addresses

● MAC addresses are allocated according to organisation.
○ Usually the manufacturer of the Ethernet network interface card (NIC).

● Typically stored permanently in the NIC (“burned in”) .
○ Often can be overridden by software.

● Structure:
○ Two bits of flags (we won’t discuss this)
○ 22-bits identifying company/organisation (e.g., device manufacturer)
○ 24-bits of identifying space.

● Usually supposed to be globally unique.
○ You might plug your computer in anywhere…

Ethernet: Types of communication

● We will typically talk about unicast.
○ Send to any one recipient.

● There are other models that we might care about:
○ Speak to everyone in the room – broadcast.
○ Speak to everyone who has joined a group in the room – multicast.
○ Send to any one member of a group - anycast.

● Ethernet supports both multicast and broadcast.
○ And generally they are not distinguished from each other at the Ethernet level.
○ We will briefly cover these if we get time.

Questions?

Ethernet: Unicast

● Unicast is the typical type of communication used on the Internet.
○ A source host wants to talk to a specific destination host.

● The Ethernet header has the fields that allow for unicast forwarding.
○ A data packet in Ethernet is referred to as a frame.

Preamble (7)
SFD
(1)

Dest. MAC (6) Src. MAC (6)
EtherType

(2)
Payload

FCS
(4)

IPG
(12)

Ethernet: Unicast

● Unicast is the typical type of communication used on the Internet.
○ A source host wants to talk to a specific destination host.

● The Ethernet header has the fields that allow for unicast forwarding.
○ A data packet in Ethernet is referred to as a frame.

Preamble (7)
SFD
(1)

Dest. MAC (6) Src. MAC (6)
EtherType

(2)
Payload

FCS
(4)

IPG
(12)

Header fields to
separate packets on the

wire.

Checksum — has this
packet been corrupted?

Ethernet: Unicast

● Unicast is the typical type of communication used on the Internet.
○ A source host wants to talk to a specific destination host.

● The Ethernet header has the fields that allow for unicast forwarding.
○ A data packet in Ethernet is referred to as a frame.

Preamble (7)
SFD
(1)

Dest. MAC (6) Src. MAC (6)
EtherType

(2)
Payload

FCS
(4)

IPG
(12)

Who are we sending to
on the shared medium –

identified by MAC.

Who is sending this
packet - with MAC

address.
What is in the payload.

Ethernet: Unicast

● To send a packet to a specific destination host - we set the destination MAC
to a specific remote machine’s MAC address.

● Packets go to everyone on the shared medium (wire).

● Receivers check the destination MAC to determine whether the packet is
destined to them.

○ “Is dst MAC == 42:01:0a:8a:00:03? It’s for me!”

Ethernet: Broadcast

● Broadcast – send to everyone!
○ Specifically, everyone on the specific Ethernet network…
○ …everyone on the same cable.

● The packet already reaches everyone – they are connected to the shared
media.

○ We need receivers to listen.

● Broadcast is implemented using the all ones address.
○ FF:FF:FF:FF:FF:FF

Ethernet: Multicast

● Multicast – send to all members of a group.
○ Trivial on classic Ethernet – since everyone gets the packet.

● Implemented by having specific addresses – one of the flags in the address
set to 1.

○ 01:00:00:00:00:00
○ Normal addresses all have an even first byte.
○ This 1 is the first bit on the wire – bytes are sent low bit first.

● Broadcast is just a special case of multicast – where everyone is in a group.

Why do we need multicast in a LAN?

● Apple invention: Bonjour/mDNS.

● iPhone wants to discover any Apple TV, or HomePod that it can play music
on.

○ It can actively discover this “hey local Apple products, are there any speakers?”.
○ Sends to a multicast group that all Apple products join by default.
○ Equally, HomePod/Apple TV can advertise “I am an Apple TV!”.

● Actually uses DNS advertisements that are sent to multicast addresses.
○ Using specific types of records – e.g., SRV – to advertise capabilities.

Questions?

Inefficiencies of a single bus

A BC D E

To: B
Hello!

Inefficiencies of a single bus

A BC D E

To: B
Hello!

To: C
Hello!

To: C
Hello!

To: E
Hello!

To: A
Hello!

Every other host is
waiting to be able to
send their message.

Inefficiencies of a single bus

A BC D E

To: B
Hello!

To: C
Hello!

To: C
Hello!

To: E
Hello!

To: A
Hello!

Every other host is
waiting to be able to
send their message.

If two hosts try and
send at the same time –

both collide.

Inefficiencies of a Shared Medium

● The best case scenario is that someone is always sending.

● Assuming our shared medium has some bandwidth limit, B, this is the best
we can do.

○ B is dictated based on how we signal packets on the wire.
○ May be do to do with modulation speed, or amount of spectrum available.

● Equally – we need everyone to be connected to the shared medium.
○ Inverse square law – eventually we are not going to be able to propagate the signal!

● So, can we do better?

Connecting Nodes Together

Is there a problem with this approach?

A B

C

D E

Connecting Nodes Together

A B

C

D E

Connecting Nodes Together

Is there anything good about this approach?

A B

C

D E

Connecting Nodes Together

A B

C

D E

Switch or
Router

Connecting Nodes Together

A B

C

D E

● Way fewer links than a full mesh!

Switch or
Router

Connecting Nodes Together

A B

C

D E

● Way fewer links than a full mesh!
● But more capacity than just a single link!

Switch or
Router

Connecting Nodes Together

A B

C

D E

● Way fewer links than a full mesh!
● But more capacity than just a single link!

Switch or
Router

Connecting Nodes Together

A B

C

D E

● Way fewer links than a full mesh!
● But more capacity than just a single link!
● With the ability to have alternate paths!

Switch or
Router

Questions?

But, we just created a new problem!

A B

C

D E

Switch or
Router

To: B
Hello!

But, we just created a new problem!

A B

C

D E

Switch or
Router

To: B
Hello!

How does this switch
know where to send this

packet?

Naïve approach to forwarding

A B

C

D E

To: B
Hello!

To: B
Hello!

To: B
Hello!

To: B
Hello!

To: B
Hello!

Flooding – send the packet to every port on the switch.

Naïve approach to forwarding

A B

C

D E

To: B
Hello!

To: B
Hello!

To: B
Hello!

To: B
Hello!

To: B
Hello!

Flooding – send the packet to every* port on the switch.

Optimisation – don’t
send the packet to the
link we received it on.

Naïve approach to forwarding

A B

C

D E

To: B
Hello!

To: B
Hello!

To: B
Hello!

To: B
Hello!

To: B
Hello!

Problem: every
packet still goes

over every link – we
are still bandwidth

limited.

Naïve approach to forwarding

A B

C

D E

To: B
Hello!

To: B
Hello!

To: B
Hello!

To: B
Hello!

To: B
Hello!

To: B
Hello!

Problem: even with
optimisation - we

can end up looping
the packet.

To: B
Hello!

Questions?

Forwarding challenges

● Our naïve approach is problematic.

● We need to solve two problems:
○ How to avoid wasting bandwidth by sending a packet to everyone even if they are not

interested.
○ How to deal with the fact that the topology of the network might mean that flooding a packet

causes it to be looped.

● Let’s start with the first one.

The Challenge of Forwarding

R2

R3

R4

Packet

● When packet arrives...

The Challenge of Forwarding

● When packet arrives, switch forwards
it to one of its neighbors

● You need to make the decision about which neighbor
fast (~nanoseconds)

● Implies the decision process is simple

R2

R3

R4

Packet ?

?

The Challenge of Forwarding

● When packet arrives, switch forwards
it to one of its neighbors

● You need to make the decision about which neighbor
fast (~nanoseconds)

● Implies the decision process is simple

● Solution: Use a table

R2

R3

R4

Packet ?

?

Forwarding with a Table

R2
R4

A R1
R3

D

B

C

R2’s Table

Dst NextHop

A R1

B R3

C R3

D R4

Forwarding with a Table

R2
R4

A R1
R3

D

B

C

R2’s Table

Dst NextHop

A R1

B R3

C R3

D R4

0

2

1

Forwarding with a Table

R2
R4

A R1
R3

D

B

C

R2’s Table

Dst NextHop

A R1

B R3

C R3

D R4

0

2

1

R2’s Table

Dst Port

A 0

B 1

C 1

D 2

.. or ..

Forwarding with a Table

R2’s Table

Dst NextHop

A R1

B R3

C R3

D R4

R2’s Table

Dst Port

A 0

B 1

C 1

D 2

.. or ..

● Given the tables, decision depends only on destination field of packet

● .. we are doing what’s called destination-based forwarding/routing
○ Very common
○ An “archetypal” Internet assumption (and basically the default)

Questions?

How do tables get populated?

R2
R4

A R1
R3

D

B

C

R2’s Table

Dst NextHop To be able to make
our forwarding

decision – we need
to populate this

table.

Approaches to populating forwarding tables

● When a packet comes along – look at where it came from – and use this to
help us learn where hosts are connected.

● Very simple!
○ We need to look at the packet that we see on the data plane.
○ No need for any kind of a priori knowledge of how the network topology works.

Learning Switches

S1A

S2

S4

S3

S5

B

C
Dst Nxt

Dst Nxt

Dst Nxt Dst Nxt

Dst Nxt

To: B
From: A

Hello!

Learning Switches

S1A

S2

S4

S3

S5

B

C
Dst Nxt

A A

Dst Nxt

Dst Nxt Dst Nxt

Dst Nxt

Learning based on
source address -
packet came from

A on port 1.
To: B

From: A
Hello!

Learning Switches

S1A

S2

S4

S3

S5

B

C
Dst Nxt

A A

Dst Nxt

Dst Nxt Dst Nxt

Dst Nxt

I don’t know where
B is – so flood.

To: B
From: A

Hello!

Learning Switches

S1A

S2

S4

S3

S5

B

C
Dst Nxt

A A

Dst Nxt

A S1

Dst Nxt

A S1

Dst Nxt

Dst Nxt

To: B
From: A

Hello!

Learning Switches

S1A

S2

S4

S3

S5

B

C
Dst Nxt

A A

Dst Nxt

A S1

Dst Nxt

A S1

Dst Nxt

A S4

Dst Nxt

A S2

To: B
From: A

Hello!

Learning Switches

S1A

S2

S4

S3

S5

B

C
Dst Nxt

A A

Dst Nxt

A S1

Dst Nxt

A S1

Dst Nxt

A S4

Dst Nxt

A S2
 B receives the

packet.

To: B
From: A

Hello!

Learning Switches

S1A

S2

S4

S3

S5

B

C
Dst Nxt

A A

Dst Nxt

A S1

Dst Nxt

A S1

Dst Nxt

A S4

Dst Nxt

A S2

B B

To: A
From: B
Bonjour!

Learning Switches

S1A

S2

S4

S3

S5

B

C
Dst Nxt

A A

Dst Nxt

A S1

B S3

Dst Nxt

A S1

Dst Nxt

A S4

Dst Nxt

A S2

B B

To: A
From: B
Bonjour!

Learning Switches

S1A

S2

S4

S3

S5

B

C
Dst Nxt

A A

B S2

Dst Nxt

A S1

B S3

Dst Nxt

A S1

Dst Nxt

A S4

Dst Nxt

A S2

B B

To: A
From: B
Bonjour!

Learning Switches

S1A

S2

S4

S3

S5

B

C
Dst Nxt

A A

B S2

Dst Nxt

A S1

B S3

Dst Nxt

A S1

Dst Nxt

A S4

Dst Nxt

A S2

B B
 A receives the

packet.

To: A
From: B
Bonjour!

Learning Switches

S1A

S2

S4

S3

S5

B

C
Dst Nxt

A A

B S2

Dst Nxt

A S1

B S3

Dst Nxt

A S1

Dst Nxt

A S4

Dst Nxt

A S2

B B

To: A
From: B

Ça va?

To: B
From: A

How are you?

Subsequent packets take a more
efficient path through the network.

Bandwidth between S1–S4 and S4–S5
is no longer wasted.

Learning Switches

● Each switch decides whether it is going to flood.
○ One switch may flood a packet when it neighbour does not.
○ Based on whether there is a forwarding table entry.

● At each switch:
○ If a forwarding table entry exists → send on the port specified.
○ Else → flood out of all ports (except the incoming port) if not.

Learning Switches in Pseudocode

on arrival of packet from neighbour previous_hop:
 # Learn
 table[packet.source].next_hop = previous_hop
 table[packet.source].ttl = 600 * time.second

 # Forward
 if packet.destination in table:
 next_hop = table[packet.destination].next_hop
 if next_hop == previous_hop:
 packet.drop()
 else:
 packet.forward_to(next_hop)
 else:
 packet.flood_to_neighbours(except=previous_hop)

Learning Switches in Pseudocode

on arrival of packet from neighbour previous_hop:
 # Learn
 table[packet.source].next_hop = previous_hop
 table[packet.source].ttl = 600 * time.second

 # Forward
 if packet.destination in table:
 next_hop = table[packet.destination].next_hop
 if next_hop == previous_hop:
 packet.drop()
 else:
 packet.forward_to(next_hop)
 else:
 packet.flood_to_neighbours(except=previous_hop)

Why do we need this time to
live?

Learning Switches in Pseudocode

on arrival of packet from neighbour previous_hop:
 # Learn
 table[packet.source].next_hop = previous_hop
 table[packet.source].ttl = 600 * time.second

 # Forward
 if packet.destination in table:
 next_hop = table[packet.destination].next_hop
 if next_hop == previous_hop:
 packet.drop()
 else:
 packet.forward_to(next_hop)
 else:
 packet.flood_to_neighbours(except=previous_hop)

Why do we need this source
port check?

Learning Switches

S1A

S2

S4

S3

S5

B

C
Dst Nxt

A A

B S2

Dst Nxt

A S1

B S3

Dst Nxt

A S1

Dst Nxt

A S4

Dst Nxt

A S2

B B

Learning Switches

● A major problem with learning switches:
○ Floods when the destination is unknown.
○ … floods have problems when the topology has loops.

● How do we prevent there being looped packets?

● Brute force solution…
○ Remove the loops.
○ Disable links until we have a topology that connects to all hosts but does not have any loops.
○ This is a spanning tree (we’ll come back and discuss these more later).

Spanning Tree Protocol

● How do we make a spanning tree from an arbitrary network?

● Step 1: Find a path from every switch to the root.

● Step 2: Disable data delivery on every link not on a path to the root.

● Step 3: When the tree breaks (a link on it fails) start over.

Spanning Tree Protocol

● How do we make a spanning tree from an arbitrary network?

● Step 1: Find a path from every switch to the root.
○ If there are multiple links – how do we choose? We need an idea of a link or a node

preference or cost.

● Step 2: Disable data delivery on every link not on a path to the root.

● Step 3: When the tree breaks (a link on it fails) start over.

Spanning Tree Protocol: Step 1 (Paths to root)

● Step 1: Find the least cost path from every switch to the root.

● Give every switch a unique, orderable ID (based on the Ethernet address)

● Work to find:
○ The root (the switch with the lowest ID)
○ The best path to the root (lowest cost).

Spanning Tree Protocol: Step 1 (Paths to root)

● Start out: all switches think that they are the root.
● Sends a message to its neighbour to say (“The root is <me> and I

can reach it in <zero> hops!”).

● On receiving a message from a neighbour:
○ First, compare the root ID to what we think the root ID is…
○ If it’s smaller than the current ID – it is a better root, use it as a root.
○ If its larger than the current ID – it is a worse root, ignore it.

■ (We’ll come back to what happens if it’s the same!)
○ … and send a triggered update to your neighbours telling you about your new state.

Spanning Tree Protocol: Step 2 (Disable links)

● Step 2: Disable data delivery on every link not on a shortest path to root.

● Wait, why is this so complicated?
○ It’s not as easy as you might think… S1

S2 S4

S3

Spanning Tree Protocol: Step 2 (Disable links)

● Step 2: Disable data delivery on every link not on a
shortest path to root.

● Wait, why is this so complicated?
○ It’s not as easy as you might think…

● Strategy:
○ Enable the link along your best path to root
○ Disable the other links to switches closer than the root to you.

■ … they are not on your best path
■ … and you can’t possibly be on theirs (you are farther than

the root than them!)
○ Leave the other links for the other switches to decide

■ … they are all farther from the root than you
■ … so you’re closer
■ … so the above enable/disable rules work for them.

S1

S2 S4

S3

Spanning Tree Protocol: Step 2 Example

● Dashed links are unknown.
● Green links are enabled.
● Red links are disabled.

● S1 is the root (lowest ID)

● Step 1 is complete – we know about our
neighbours.

S1

S2 S4

S3

S1 has the lowest ID so it is
the root.

Spanning Tree Protocol: Step 2 Example

● S1’s perspective
○ S1–S2: Unknown
○ S1–S4: Unknown

S1

S2 S4

S3

S1 has the lowest ID so it is
the root.

? ?

Spanning Tree Protocol: Step 2 Example

● S2’s perspective
○ S2–S1: Enabled
○ S2–S3: Unknown
○ S2–S4: Unknown

● S4 has the same distance to the
root – but has a higher ID – so it’s
farther from the root.

S1

S2 S4

S3

S1 has the lowest ID so it is
the root.

?

?

Spanning Tree Protocol: Step 2 Example

● S3’s perspective
○ S3–S2: Enabled
○ S2–S4: Disabled

● S2:
○ Closer to the root than S4 (same

distance, but lower ID)

● S4:
○ Closer than we are, but not on the

shortest path – disable.

S1

S2 S4

S3

S1 has the lowest ID so it is
the root.

Spanning Tree Protocol: Step 2 Example

● S4’s perspective
○ S4–S1: Enabled
○ S4–S3: Unknown
○ S4–S2: Disabled

● S2:
○ Closer to the root (same distance, but

smaller ID).

S1

S2 S4

S3

S1 has the lowest ID so it is
the root.

Spanning Tree Protocol: Step 2 Example

● We’ve got a spanning tree!

● And it matches the next-hops
each switch came up with from
Step 1!

S1

S2 S4

S3

S1 has the lowest ID so it is
the root.

Spanning Tree Protocol: Step 2 (Disable links)

● Step 2 Recap…

● No ties when comparing distance – break ties using a switch’s ID.

● Each switch:
○ Enables the link along the best path to the root (and all links to hosts!)
○ Disables every other link to a neighbour closer to the root.
○ Lets the furthest-away neighbour decide the rest!

● In this way - a switch closer doesn’t disable a link needed by a switch that’s
farther.

○ Doesn’t require explicit co-ordination (no need to ask “do you need this link?”)
○ Exactly one switch is responsible for enabling or disabling each link.

Spanning Tree Protocol: Step 3

● Step 3: When the tree breaks (a link on it fails), start over.

● Starts the process at step 1 to re-discover a spanning tree.

Spanning Tree Protocol

● Notice, we had to exchange messages between switches to have some
knowledge of the topology.

○ Done by the switch’s control plane.

● We had to have some idea of preference or cost within the topology to
decide what to enable/disable.

● Spanning tree is a (simple) “routing” protocol.
○ We’ll talk more about different protocols and their approaches going forward.
○ Limited in functionality – simply to avoid us having a “loopy” topology that causes problems

with learning switches.

Next Time

● Consider some of the problems of our Layer 2 network.

● Introduce more routing protocols and discuss different optimisation criteria
that they might enable.

