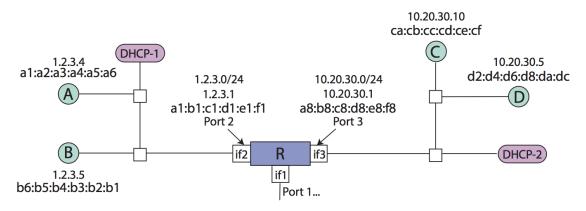
CS 168 Fall 2024 Introduction to the Internet: Architecture and Protocols Sylvia, Rob, and Peyrin Discussion 11: End-to-End	nitecture and Protocols Discussion 11: End-to-End	168Introduction to the Internet:2024Sylvia, Rob, and Peyrin	0.0 - 0.0
---	--	---	-----------

1 Multiple Choice

- 1. Which protocol does a host use to learn its own IP address?
 - (a) DHCP(b) DNS(c) ICMP
 - (c) ARP (e) None of these

2. Which protocol does a host use to learn its own MAC address?

(a) DHCP
(b) DNS
(c) ARP
(e) None of these


3. Which protocol does a host use to learn the MAC address of another host on the same network?

- (a) DHCP(b) DNS(c) ICMP
- (c) ARP (e) None of these

4. DHCP is a protocol in which of the following layers?

- (a) Physical (d) Transport
- (b) Datalink
- (c) Network (e) Application
- 5. ARP is a protocol in which of the following layers?
 - (a) Physical
 (b) Datalink
 (c) Network
 (e) Application
- 6. Which of the following can a host learn with DHCP? Select all that apply.
 - (a) Its own MAC address.
 (b) Its own IP address.
 (c) The MAC address of another host.
 (d) The MAC address of its first-hop router.
 (e) The IP address of its first-hop router.
 (f) The MAC address of its first-hop router.
 - (d) The IP address of another host. (g) Its own subnet mask.

2 Host-to-Host

Consider the above topology. Here, two networks are connected through router R. R has three interfaces, each associated with a port, MAC address, IP address, and subnet.

We are going to consider what happens when A sends a packet to C. Assume that A just attached to the network, but already knows the IP address of C (10.20.30.10). No hosts or routers have sent any previous ARP requests.

1. First *A* needs to learn its own IP address, subnet mask, and the IP of its first-hop router by using DHCP. For each of the following DHCP messages, indicate the message's timing in the packet exchange (1 is first, 4 is last), who sends the message, and whether the message is broadcast or unicast.

Message	Order	Sender	Message Type
DHCP request	1/2/3/4	Client / Server	Broadcast / Unicast
DHCP ACK	1/2/3/4	Client / Server	Broadcast / Unicast
DHCP discovery	1/2/3/4	Client / Server	Broadcast / Unicast
DHCP offer	1/2/3/4	Client / Server	Broadcast / Unicast

- 2. Using this information, how does *A* determine if *C* is on the same subnet?
- 3. Given that *C* is not on the same subnet as *A*, *A* must send the packet to its first hop router *R*. Which requests and responses are exchanged before this can happen?

Request	Response
ARP request for 1.2.3.4	ARP response: 1.2.3.4
ARP request for 1.2.3.1	ARP response: 1.2.3.1
ARP request for 10.20.30.10	ARP response: 10.20.30.10
ARP request for a1:a2:a3:a4:a5:a6	ARP response: a1:a2:a3:a4:a5:a6
ARP request for a1:b1:c1:d1:e1:f1	ARP response: a1:b1:c1:d1:e1:f1
ARP request for ca:cb:cc:cd:ce:cf	ARP response: ca:cb:cc:cd:ce:cf

4. Is the ARP request broadcast or unicast? What about the ARP response?

5. In the packet A now sends to R, what are the source and destination IP and MAC addresses?

Source IP: _____

Source MAC:

Destination IP: _____

Destination MAC:

6. How does *R* know which interface to forward *A*'s packet on?

- 7. Now *R* has the packet. List all remaining packets that are exchanged until *C* receives the packet from *A*.
- 8. What are the source and destination IP and MAC addresses for the packet that *R* sends to *C*?

Source MAC: _____

Destination IP: _____

Destination MAC:	