
1 Distance-Vector Routing

The nodes in the above network share routes with each other using distance-vector routing. Below are the initial routing tables for each node, and a table showing the costs for each of their neighboring links. Links without a distance provided have an implicit distance of 1.

	S1
Dest.	NextHop, Dist.
\boldsymbol{A}	Direct, 1

Dest.	NextHop, Dist.
$\boldsymbol{\mathit{B}}$	Direct, 1

Dest.	NextHop, Dist.
C	Direct, 1

S3

	S4
Dest.	NextHop, Dist.
D	Direct, 1

The following questions indicate events that happen consecutively. You can assume that no other events occur other than the ones specified. Note that all blanks may not be necessary.

EVENT: S3 advertises its routes to S1 and S4.

1. What do the routing tables for *S*1 and *S*4 look like after receiving *S*3's routes? (You may not need to fill in all the rows)

S4

	Dest.	NextHop, Dist.
	A	Direct, 1
S1		

Dest.	NextHop, Dist.
D	Direct, 1

1

2. Which nodes among S1 and S4 are expected to advertise their routes after receiving S3's routes? (Assuming the advertising routes on a routing table change optimization is being used)

EVENT: S1 advertises its routes to S2, S3, and S4.

3. What do the routing tables for *S*2, *S*3, and *S*4 look like after receiving *S*1's routes? (You may not need to fill in all columns)

	Dest.	NextHop, Dist.
	В	Direct, 1
S2		

Dest. NextHop, Dist.

C Direct, 1

Dest. NextHop, Dist.

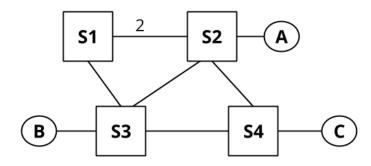
D Direct, 1

S4

EVENT: S4 advertises its routes to S1 and S3. EVENT: S1 advertises its routes to S2, S3, and S4.

4. At this point, what path does S2 use to reach D, and what is the cost?

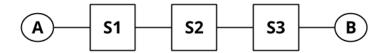
S3


EVENT: S3 advertises its routes to S1 and S4.

5. What do the routing tables for S1 and S2 look like now?

	Dest.	NextHop, Dist.	
	A	Direct, 1	
S1			S2
			1

Dest.	NextHop, Dist.
В	Direct, 1


2 Split Horizon and Poisoned Reverse

All **unlabeled** links have a cost of 1. The parts of the question do *not* build on each other.

- 1. Assume that the routers use **split horizon**. Say that S4 advertises (A: 2, C: 1) to S3. Assuming that S3 has received no other advertisements, what does S3 now tell S4 about S3's path to A?
- 2. Assume that the routers use **poisoned reverse**. Routing tables have not converged and S3 believes its shortest path to A is through S1 (this path is S3-S1-S2 of length 4). S3 advertises its routes to S4. Now, S4 advertises to S3. S4 bases this advertisement off of it's routing table which has: (B: 2, A: 2, C: 1). After recomputing its routes, S3 advertises its routes to S4. What is the advertised distance to A?

- 3. Consider the simple topology (A-S1-S2-S3). After the routing tables have converged, link S1-S2 goes down. When S2 advertises to S3 (A: ∞), is this an act of **poisoning a route** or **poisoned reverse**?
- 4. **Poisoning a route** and **poisoned reverse** might sound similar, but actually we can think of one of them as being "honest" while the other one is "lying." Which one tells the truth, and which one tells a white lie to keep the network functioning?
- 3 Count to Infinity (Guided Q)

- 1. For part 1 of this question there is **no** split-horizon or poisoned reverse, and advertisements are only sent periodically (aka when it is explicitly stated).
 - (a) What do the routing tables look like once S1, S2 and S3 converge?

 Dest.
 NextHop, Dist.

 A
 Direct, 1

32		
Dest.	NextHop, Dist.	

Dest.	NextHop, Dist.
В	Direct, 1

S3

(b) What periodic advertisement will S1 and S2 send to each other? (One such message is given as an example)

From	To	(Destination, Distance)
<i>S</i> 1	<i>S</i> 2	(A,1)

EVENT: The link between S2 and S3 goes down.

(c) What will S1 and S2 send to each other?

From	То	(Destination, Distance)

EVENT: S2's route to B finally expires

(d) After S1 and S2 exchange advertisements again, what will their routing tables look like?

S1

NextHop, Dist.
Direct, 1

Dest.	NextHop, Dist.

S2

EVENT: S1's route to B expires

(e) After S1 and S2 exchange advertisements again, what will their routing tables look like?

S1

91	
Dest.	NextHop, Dist.
A	Direct, 1

S2	
Dest.	NextHop, Dist.

(f) Is this good?

 $\frac{\textbf{Dest.}}{A}$

- 2. For part 2 of this question there is **split-horizon**, but **no** poisoned reverse and advertisements are only sent periodically (aka when it is explicitly stated). Also, all dropped links are back up and the routing state starts out converged!
 - (a) What will S1 and S2 send to each other after everything has converged?

From	To	(Destination, Distance)

EVENT: *The link between S2 and S3 goes down.*

(b) What will S1 and S2 send to each other?

From	To	(Destination, Distance)

EVENT: S2's route to B finally expires

(c) After S1 and S2 exchange advertisements again, what will their routing tables look like?

S1

01		
Dest.	NextHop, Dist.	
A	Direct, 1	

52		
Dest.	NextHop, Dist.	

(d) Will this end well?